LCOV - code coverage report
Current view: top level - kernel - workqueue.c (source / functions) Hit Total Coverage
Test: coverage.info Lines: 689 1634 42.2 %
Date: 2023-04-06 08:38:28 Functions: 61 129 47.3 %

          Line data    Source code
       1             : // SPDX-License-Identifier: GPL-2.0-only
       2             : /*
       3             :  * kernel/workqueue.c - generic async execution with shared worker pool
       4             :  *
       5             :  * Copyright (C) 2002           Ingo Molnar
       6             :  *
       7             :  *   Derived from the taskqueue/keventd code by:
       8             :  *     David Woodhouse <dwmw2@infradead.org>
       9             :  *     Andrew Morton
      10             :  *     Kai Petzke <wpp@marie.physik.tu-berlin.de>
      11             :  *     Theodore Ts'o <tytso@mit.edu>
      12             :  *
      13             :  * Made to use alloc_percpu by Christoph Lameter.
      14             :  *
      15             :  * Copyright (C) 2010           SUSE Linux Products GmbH
      16             :  * Copyright (C) 2010           Tejun Heo <tj@kernel.org>
      17             :  *
      18             :  * This is the generic async execution mechanism.  Work items as are
      19             :  * executed in process context.  The worker pool is shared and
      20             :  * automatically managed.  There are two worker pools for each CPU (one for
      21             :  * normal work items and the other for high priority ones) and some extra
      22             :  * pools for workqueues which are not bound to any specific CPU - the
      23             :  * number of these backing pools is dynamic.
      24             :  *
      25             :  * Please read Documentation/core-api/workqueue.rst for details.
      26             :  */
      27             : 
      28             : #include <linux/export.h>
      29             : #include <linux/kernel.h>
      30             : #include <linux/sched.h>
      31             : #include <linux/init.h>
      32             : #include <linux/signal.h>
      33             : #include <linux/completion.h>
      34             : #include <linux/workqueue.h>
      35             : #include <linux/slab.h>
      36             : #include <linux/cpu.h>
      37             : #include <linux/notifier.h>
      38             : #include <linux/kthread.h>
      39             : #include <linux/hardirq.h>
      40             : #include <linux/mempolicy.h>
      41             : #include <linux/freezer.h>
      42             : #include <linux/debug_locks.h>
      43             : #include <linux/lockdep.h>
      44             : #include <linux/idr.h>
      45             : #include <linux/jhash.h>
      46             : #include <linux/hashtable.h>
      47             : #include <linux/rculist.h>
      48             : #include <linux/nodemask.h>
      49             : #include <linux/moduleparam.h>
      50             : #include <linux/uaccess.h>
      51             : #include <linux/sched/isolation.h>
      52             : #include <linux/nmi.h>
      53             : #include <linux/kvm_para.h>
      54             : 
      55             : #include "workqueue_internal.h"
      56             : 
      57             : enum {
      58             :         /*
      59             :          * worker_pool flags
      60             :          *
      61             :          * A bound pool is either associated or disassociated with its CPU.
      62             :          * While associated (!DISASSOCIATED), all workers are bound to the
      63             :          * CPU and none has %WORKER_UNBOUND set and concurrency management
      64             :          * is in effect.
      65             :          *
      66             :          * While DISASSOCIATED, the cpu may be offline and all workers have
      67             :          * %WORKER_UNBOUND set and concurrency management disabled, and may
      68             :          * be executing on any CPU.  The pool behaves as an unbound one.
      69             :          *
      70             :          * Note that DISASSOCIATED should be flipped only while holding
      71             :          * wq_pool_attach_mutex to avoid changing binding state while
      72             :          * worker_attach_to_pool() is in progress.
      73             :          */
      74             :         POOL_MANAGER_ACTIVE     = 1 << 0, /* being managed */
      75             :         POOL_DISASSOCIATED      = 1 << 2, /* cpu can't serve workers */
      76             : 
      77             :         /* worker flags */
      78             :         WORKER_DIE              = 1 << 1, /* die die die */
      79             :         WORKER_IDLE             = 1 << 2, /* is idle */
      80             :         WORKER_PREP             = 1 << 3, /* preparing to run works */
      81             :         WORKER_CPU_INTENSIVE    = 1 << 6, /* cpu intensive */
      82             :         WORKER_UNBOUND          = 1 << 7, /* worker is unbound */
      83             :         WORKER_REBOUND          = 1 << 8, /* worker was rebound */
      84             : 
      85             :         WORKER_NOT_RUNNING      = WORKER_PREP | WORKER_CPU_INTENSIVE |
      86             :                                   WORKER_UNBOUND | WORKER_REBOUND,
      87             : 
      88             :         NR_STD_WORKER_POOLS     = 2,            /* # standard pools per cpu */
      89             : 
      90             :         UNBOUND_POOL_HASH_ORDER = 6,            /* hashed by pool->attrs */
      91             :         BUSY_WORKER_HASH_ORDER  = 6,            /* 64 pointers */
      92             : 
      93             :         MAX_IDLE_WORKERS_RATIO  = 4,            /* 1/4 of busy can be idle */
      94             :         IDLE_WORKER_TIMEOUT     = 300 * HZ,     /* keep idle ones for 5 mins */
      95             : 
      96             :         MAYDAY_INITIAL_TIMEOUT  = HZ / 100 >= 2 ? HZ / 100 : 2,
      97             :                                                 /* call for help after 10ms
      98             :                                                    (min two ticks) */
      99             :         MAYDAY_INTERVAL         = HZ / 10,      /* and then every 100ms */
     100             :         CREATE_COOLDOWN         = HZ,           /* time to breath after fail */
     101             : 
     102             :         /*
     103             :          * Rescue workers are used only on emergencies and shared by
     104             :          * all cpus.  Give MIN_NICE.
     105             :          */
     106             :         RESCUER_NICE_LEVEL      = MIN_NICE,
     107             :         HIGHPRI_NICE_LEVEL      = MIN_NICE,
     108             : 
     109             :         WQ_NAME_LEN             = 24,
     110             : };
     111             : 
     112             : /*
     113             :  * Structure fields follow one of the following exclusion rules.
     114             :  *
     115             :  * I: Modifiable by initialization/destruction paths and read-only for
     116             :  *    everyone else.
     117             :  *
     118             :  * P: Preemption protected.  Disabling preemption is enough and should
     119             :  *    only be modified and accessed from the local cpu.
     120             :  *
     121             :  * L: pool->lock protected.  Access with pool->lock held.
     122             :  *
     123             :  * X: During normal operation, modification requires pool->lock and should
     124             :  *    be done only from local cpu.  Either disabling preemption on local
     125             :  *    cpu or grabbing pool->lock is enough for read access.  If
     126             :  *    POOL_DISASSOCIATED is set, it's identical to L.
     127             :  *
     128             :  * A: wq_pool_attach_mutex protected.
     129             :  *
     130             :  * PL: wq_pool_mutex protected.
     131             :  *
     132             :  * PR: wq_pool_mutex protected for writes.  RCU protected for reads.
     133             :  *
     134             :  * PW: wq_pool_mutex and wq->mutex protected for writes.  Either for reads.
     135             :  *
     136             :  * PWR: wq_pool_mutex and wq->mutex protected for writes.  Either or
     137             :  *      RCU for reads.
     138             :  *
     139             :  * WQ: wq->mutex protected.
     140             :  *
     141             :  * WR: wq->mutex protected for writes.  RCU protected for reads.
     142             :  *
     143             :  * MD: wq_mayday_lock protected.
     144             :  */
     145             : 
     146             : /* struct worker is defined in workqueue_internal.h */
     147             : 
     148             : struct worker_pool {
     149             :         raw_spinlock_t          lock;           /* the pool lock */
     150             :         int                     cpu;            /* I: the associated cpu */
     151             :         int                     node;           /* I: the associated node ID */
     152             :         int                     id;             /* I: pool ID */
     153             :         unsigned int            flags;          /* X: flags */
     154             : 
     155             :         unsigned long           watchdog_ts;    /* L: watchdog timestamp */
     156             : 
     157             :         /*
     158             :          * The counter is incremented in a process context on the associated CPU
     159             :          * w/ preemption disabled, and decremented or reset in the same context
     160             :          * but w/ pool->lock held. The readers grab pool->lock and are
     161             :          * guaranteed to see if the counter reached zero.
     162             :          */
     163             :         int                     nr_running;
     164             : 
     165             :         struct list_head        worklist;       /* L: list of pending works */
     166             : 
     167             :         int                     nr_workers;     /* L: total number of workers */
     168             :         int                     nr_idle;        /* L: currently idle workers */
     169             : 
     170             :         struct list_head        idle_list;      /* L: list of idle workers */
     171             :         struct timer_list       idle_timer;     /* L: worker idle timeout */
     172             :         struct work_struct      idle_cull_work; /* L: worker idle cleanup */
     173             : 
     174             :         struct timer_list       mayday_timer;     /* L: SOS timer for workers */
     175             : 
     176             :         /* a workers is either on busy_hash or idle_list, or the manager */
     177             :         DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
     178             :                                                 /* L: hash of busy workers */
     179             : 
     180             :         struct worker           *manager;       /* L: purely informational */
     181             :         struct list_head        workers;        /* A: attached workers */
     182             :         struct list_head        dying_workers;  /* A: workers about to die */
     183             :         struct completion       *detach_completion; /* all workers detached */
     184             : 
     185             :         struct ida              worker_ida;     /* worker IDs for task name */
     186             : 
     187             :         struct workqueue_attrs  *attrs;         /* I: worker attributes */
     188             :         struct hlist_node       hash_node;      /* PL: unbound_pool_hash node */
     189             :         int                     refcnt;         /* PL: refcnt for unbound pools */
     190             : 
     191             :         /*
     192             :          * Destruction of pool is RCU protected to allow dereferences
     193             :          * from get_work_pool().
     194             :          */
     195             :         struct rcu_head         rcu;
     196             : };
     197             : 
     198             : /*
     199             :  * The per-pool workqueue.  While queued, the lower WORK_STRUCT_FLAG_BITS
     200             :  * of work_struct->data are used for flags and the remaining high bits
     201             :  * point to the pwq; thus, pwqs need to be aligned at two's power of the
     202             :  * number of flag bits.
     203             :  */
     204             : struct pool_workqueue {
     205             :         struct worker_pool      *pool;          /* I: the associated pool */
     206             :         struct workqueue_struct *wq;            /* I: the owning workqueue */
     207             :         int                     work_color;     /* L: current color */
     208             :         int                     flush_color;    /* L: flushing color */
     209             :         int                     refcnt;         /* L: reference count */
     210             :         int                     nr_in_flight[WORK_NR_COLORS];
     211             :                                                 /* L: nr of in_flight works */
     212             : 
     213             :         /*
     214             :          * nr_active management and WORK_STRUCT_INACTIVE:
     215             :          *
     216             :          * When pwq->nr_active >= max_active, new work item is queued to
     217             :          * pwq->inactive_works instead of pool->worklist and marked with
     218             :          * WORK_STRUCT_INACTIVE.
     219             :          *
     220             :          * All work items marked with WORK_STRUCT_INACTIVE do not participate
     221             :          * in pwq->nr_active and all work items in pwq->inactive_works are
     222             :          * marked with WORK_STRUCT_INACTIVE.  But not all WORK_STRUCT_INACTIVE
     223             :          * work items are in pwq->inactive_works.  Some of them are ready to
     224             :          * run in pool->worklist or worker->scheduled.  Those work itmes are
     225             :          * only struct wq_barrier which is used for flush_work() and should
     226             :          * not participate in pwq->nr_active.  For non-barrier work item, it
     227             :          * is marked with WORK_STRUCT_INACTIVE iff it is in pwq->inactive_works.
     228             :          */
     229             :         int                     nr_active;      /* L: nr of active works */
     230             :         int                     max_active;     /* L: max active works */
     231             :         struct list_head        inactive_works; /* L: inactive works */
     232             :         struct list_head        pwqs_node;      /* WR: node on wq->pwqs */
     233             :         struct list_head        mayday_node;    /* MD: node on wq->maydays */
     234             : 
     235             :         /*
     236             :          * Release of unbound pwq is punted to system_wq.  See put_pwq()
     237             :          * and pwq_unbound_release_workfn() for details.  pool_workqueue
     238             :          * itself is also RCU protected so that the first pwq can be
     239             :          * determined without grabbing wq->mutex.
     240             :          */
     241             :         struct work_struct      unbound_release_work;
     242             :         struct rcu_head         rcu;
     243             : } __aligned(1 << WORK_STRUCT_FLAG_BITS);
     244             : 
     245             : /*
     246             :  * Structure used to wait for workqueue flush.
     247             :  */
     248             : struct wq_flusher {
     249             :         struct list_head        list;           /* WQ: list of flushers */
     250             :         int                     flush_color;    /* WQ: flush color waiting for */
     251             :         struct completion       done;           /* flush completion */
     252             : };
     253             : 
     254             : struct wq_device;
     255             : 
     256             : /*
     257             :  * The externally visible workqueue.  It relays the issued work items to
     258             :  * the appropriate worker_pool through its pool_workqueues.
     259             :  */
     260             : struct workqueue_struct {
     261             :         struct list_head        pwqs;           /* WR: all pwqs of this wq */
     262             :         struct list_head        list;           /* PR: list of all workqueues */
     263             : 
     264             :         struct mutex            mutex;          /* protects this wq */
     265             :         int                     work_color;     /* WQ: current work color */
     266             :         int                     flush_color;    /* WQ: current flush color */
     267             :         atomic_t                nr_pwqs_to_flush; /* flush in progress */
     268             :         struct wq_flusher       *first_flusher; /* WQ: first flusher */
     269             :         struct list_head        flusher_queue;  /* WQ: flush waiters */
     270             :         struct list_head        flusher_overflow; /* WQ: flush overflow list */
     271             : 
     272             :         struct list_head        maydays;        /* MD: pwqs requesting rescue */
     273             :         struct worker           *rescuer;       /* MD: rescue worker */
     274             : 
     275             :         int                     nr_drainers;    /* WQ: drain in progress */
     276             :         int                     saved_max_active; /* WQ: saved pwq max_active */
     277             : 
     278             :         struct workqueue_attrs  *unbound_attrs; /* PW: only for unbound wqs */
     279             :         struct pool_workqueue   *dfl_pwq;       /* PW: only for unbound wqs */
     280             : 
     281             : #ifdef CONFIG_SYSFS
     282             :         struct wq_device        *wq_dev;        /* I: for sysfs interface */
     283             : #endif
     284             : #ifdef CONFIG_LOCKDEP
     285             :         char                    *lock_name;
     286             :         struct lock_class_key   key;
     287             :         struct lockdep_map      lockdep_map;
     288             : #endif
     289             :         char                    name[WQ_NAME_LEN]; /* I: workqueue name */
     290             : 
     291             :         /*
     292             :          * Destruction of workqueue_struct is RCU protected to allow walking
     293             :          * the workqueues list without grabbing wq_pool_mutex.
     294             :          * This is used to dump all workqueues from sysrq.
     295             :          */
     296             :         struct rcu_head         rcu;
     297             : 
     298             :         /* hot fields used during command issue, aligned to cacheline */
     299             :         unsigned int            flags ____cacheline_aligned; /* WQ: WQ_* flags */
     300             :         struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */
     301             :         struct pool_workqueue __rcu *numa_pwq_tbl[]; /* PWR: unbound pwqs indexed by node */
     302             : };
     303             : 
     304             : static struct kmem_cache *pwq_cache;
     305             : 
     306             : static cpumask_var_t *wq_numa_possible_cpumask;
     307             :                                         /* possible CPUs of each node */
     308             : 
     309             : static bool wq_disable_numa;
     310             : module_param_named(disable_numa, wq_disable_numa, bool, 0444);
     311             : 
     312             : /* see the comment above the definition of WQ_POWER_EFFICIENT */
     313             : static bool wq_power_efficient = IS_ENABLED(CONFIG_WQ_POWER_EFFICIENT_DEFAULT);
     314             : module_param_named(power_efficient, wq_power_efficient, bool, 0444);
     315             : 
     316             : static bool wq_online;                  /* can kworkers be created yet? */
     317             : 
     318             : static bool wq_numa_enabled;            /* unbound NUMA affinity enabled */
     319             : 
     320             : /* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */
     321             : static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf;
     322             : 
     323             : static DEFINE_MUTEX(wq_pool_mutex);     /* protects pools and workqueues list */
     324             : static DEFINE_MUTEX(wq_pool_attach_mutex); /* protects worker attach/detach */
     325             : static DEFINE_RAW_SPINLOCK(wq_mayday_lock);     /* protects wq->maydays list */
     326             : /* wait for manager to go away */
     327             : static struct rcuwait manager_wait = __RCUWAIT_INITIALIZER(manager_wait);
     328             : 
     329             : static LIST_HEAD(workqueues);           /* PR: list of all workqueues */
     330             : static bool workqueue_freezing;         /* PL: have wqs started freezing? */
     331             : 
     332             : /* PL&A: allowable cpus for unbound wqs and work items */
     333             : static cpumask_var_t wq_unbound_cpumask;
     334             : 
     335             : /* CPU where unbound work was last round robin scheduled from this CPU */
     336             : static DEFINE_PER_CPU(int, wq_rr_cpu_last);
     337             : 
     338             : /*
     339             :  * Local execution of unbound work items is no longer guaranteed.  The
     340             :  * following always forces round-robin CPU selection on unbound work items
     341             :  * to uncover usages which depend on it.
     342             :  */
     343             : #ifdef CONFIG_DEBUG_WQ_FORCE_RR_CPU
     344             : static bool wq_debug_force_rr_cpu = true;
     345             : #else
     346             : static bool wq_debug_force_rr_cpu = false;
     347             : #endif
     348             : module_param_named(debug_force_rr_cpu, wq_debug_force_rr_cpu, bool, 0644);
     349             : 
     350             : /* the per-cpu worker pools */
     351             : static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS], cpu_worker_pools);
     352             : 
     353             : static DEFINE_IDR(worker_pool_idr);     /* PR: idr of all pools */
     354             : 
     355             : /* PL: hash of all unbound pools keyed by pool->attrs */
     356             : static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);
     357             : 
     358             : /* I: attributes used when instantiating standard unbound pools on demand */
     359             : static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];
     360             : 
     361             : /* I: attributes used when instantiating ordered pools on demand */
     362             : static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS];
     363             : 
     364             : struct workqueue_struct *system_wq __read_mostly;
     365             : EXPORT_SYMBOL(system_wq);
     366             : struct workqueue_struct *system_highpri_wq __read_mostly;
     367             : EXPORT_SYMBOL_GPL(system_highpri_wq);
     368             : struct workqueue_struct *system_long_wq __read_mostly;
     369             : EXPORT_SYMBOL_GPL(system_long_wq);
     370             : struct workqueue_struct *system_unbound_wq __read_mostly;
     371             : EXPORT_SYMBOL_GPL(system_unbound_wq);
     372             : struct workqueue_struct *system_freezable_wq __read_mostly;
     373             : EXPORT_SYMBOL_GPL(system_freezable_wq);
     374             : struct workqueue_struct *system_power_efficient_wq __read_mostly;
     375             : EXPORT_SYMBOL_GPL(system_power_efficient_wq);
     376             : struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly;
     377             : EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq);
     378             : 
     379             : static int worker_thread(void *__worker);
     380             : static void workqueue_sysfs_unregister(struct workqueue_struct *wq);
     381             : static void show_pwq(struct pool_workqueue *pwq);
     382             : static void show_one_worker_pool(struct worker_pool *pool);
     383             : 
     384             : #define CREATE_TRACE_POINTS
     385             : #include <trace/events/workqueue.h>
     386             : 
     387             : #define assert_rcu_or_pool_mutex()                                      \
     388             :         RCU_LOCKDEP_WARN(!rcu_read_lock_held() &&                       \
     389             :                          !lockdep_is_held(&wq_pool_mutex),          \
     390             :                          "RCU or wq_pool_mutex should be held")
     391             : 
     392             : #define assert_rcu_or_wq_mutex_or_pool_mutex(wq)                        \
     393             :         RCU_LOCKDEP_WARN(!rcu_read_lock_held() &&                       \
     394             :                          !lockdep_is_held(&wq->mutex) &&         \
     395             :                          !lockdep_is_held(&wq_pool_mutex),          \
     396             :                          "RCU, wq->mutex or wq_pool_mutex should be held")
     397             : 
     398             : #define for_each_cpu_worker_pool(pool, cpu)                             \
     399             :         for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0];           \
     400             :              (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
     401             :              (pool)++)
     402             : 
     403             : /**
     404             :  * for_each_pool - iterate through all worker_pools in the system
     405             :  * @pool: iteration cursor
     406             :  * @pi: integer used for iteration
     407             :  *
     408             :  * This must be called either with wq_pool_mutex held or RCU read
     409             :  * locked.  If the pool needs to be used beyond the locking in effect, the
     410             :  * caller is responsible for guaranteeing that the pool stays online.
     411             :  *
     412             :  * The if/else clause exists only for the lockdep assertion and can be
     413             :  * ignored.
     414             :  */
     415             : #define for_each_pool(pool, pi)                                         \
     416             :         idr_for_each_entry(&worker_pool_idr, pool, pi)                      \
     417             :                 if (({ assert_rcu_or_pool_mutex(); false; })) { }       \
     418             :                 else
     419             : 
     420             : /**
     421             :  * for_each_pool_worker - iterate through all workers of a worker_pool
     422             :  * @worker: iteration cursor
     423             :  * @pool: worker_pool to iterate workers of
     424             :  *
     425             :  * This must be called with wq_pool_attach_mutex.
     426             :  *
     427             :  * The if/else clause exists only for the lockdep assertion and can be
     428             :  * ignored.
     429             :  */
     430             : #define for_each_pool_worker(worker, pool)                              \
     431             :         list_for_each_entry((worker), &(pool)->workers, node)            \
     432             :                 if (({ lockdep_assert_held(&wq_pool_attach_mutex); false; })) { } \
     433             :                 else
     434             : 
     435             : /**
     436             :  * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
     437             :  * @pwq: iteration cursor
     438             :  * @wq: the target workqueue
     439             :  *
     440             :  * This must be called either with wq->mutex held or RCU read locked.
     441             :  * If the pwq needs to be used beyond the locking in effect, the caller is
     442             :  * responsible for guaranteeing that the pwq stays online.
     443             :  *
     444             :  * The if/else clause exists only for the lockdep assertion and can be
     445             :  * ignored.
     446             :  */
     447             : #define for_each_pwq(pwq, wq)                                           \
     448             :         list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node,           \
     449             :                                  lockdep_is_held(&(wq->mutex)))
     450             : 
     451             : #ifdef CONFIG_DEBUG_OBJECTS_WORK
     452             : 
     453             : static const struct debug_obj_descr work_debug_descr;
     454             : 
     455             : static void *work_debug_hint(void *addr)
     456             : {
     457             :         return ((struct work_struct *) addr)->func;
     458             : }
     459             : 
     460             : static bool work_is_static_object(void *addr)
     461             : {
     462             :         struct work_struct *work = addr;
     463             : 
     464             :         return test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work));
     465             : }
     466             : 
     467             : /*
     468             :  * fixup_init is called when:
     469             :  * - an active object is initialized
     470             :  */
     471             : static bool work_fixup_init(void *addr, enum debug_obj_state state)
     472             : {
     473             :         struct work_struct *work = addr;
     474             : 
     475             :         switch (state) {
     476             :         case ODEBUG_STATE_ACTIVE:
     477             :                 cancel_work_sync(work);
     478             :                 debug_object_init(work, &work_debug_descr);
     479             :                 return true;
     480             :         default:
     481             :                 return false;
     482             :         }
     483             : }
     484             : 
     485             : /*
     486             :  * fixup_free is called when:
     487             :  * - an active object is freed
     488             :  */
     489             : static bool work_fixup_free(void *addr, enum debug_obj_state state)
     490             : {
     491             :         struct work_struct *work = addr;
     492             : 
     493             :         switch (state) {
     494             :         case ODEBUG_STATE_ACTIVE:
     495             :                 cancel_work_sync(work);
     496             :                 debug_object_free(work, &work_debug_descr);
     497             :                 return true;
     498             :         default:
     499             :                 return false;
     500             :         }
     501             : }
     502             : 
     503             : static const struct debug_obj_descr work_debug_descr = {
     504             :         .name           = "work_struct",
     505             :         .debug_hint     = work_debug_hint,
     506             :         .is_static_object = work_is_static_object,
     507             :         .fixup_init     = work_fixup_init,
     508             :         .fixup_free     = work_fixup_free,
     509             : };
     510             : 
     511             : static inline void debug_work_activate(struct work_struct *work)
     512             : {
     513             :         debug_object_activate(work, &work_debug_descr);
     514             : }
     515             : 
     516             : static inline void debug_work_deactivate(struct work_struct *work)
     517             : {
     518             :         debug_object_deactivate(work, &work_debug_descr);
     519             : }
     520             : 
     521             : void __init_work(struct work_struct *work, int onstack)
     522             : {
     523             :         if (onstack)
     524             :                 debug_object_init_on_stack(work, &work_debug_descr);
     525             :         else
     526             :                 debug_object_init(work, &work_debug_descr);
     527             : }
     528             : EXPORT_SYMBOL_GPL(__init_work);
     529             : 
     530             : void destroy_work_on_stack(struct work_struct *work)
     531             : {
     532             :         debug_object_free(work, &work_debug_descr);
     533             : }
     534             : EXPORT_SYMBOL_GPL(destroy_work_on_stack);
     535             : 
     536             : void destroy_delayed_work_on_stack(struct delayed_work *work)
     537             : {
     538             :         destroy_timer_on_stack(&work->timer);
     539             :         debug_object_free(&work->work, &work_debug_descr);
     540             : }
     541             : EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack);
     542             : 
     543             : #else
     544             : static inline void debug_work_activate(struct work_struct *work) { }
     545             : static inline void debug_work_deactivate(struct work_struct *work) { }
     546             : #endif
     547             : 
     548             : /**
     549             :  * worker_pool_assign_id - allocate ID and assign it to @pool
     550             :  * @pool: the pool pointer of interest
     551             :  *
     552             :  * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned
     553             :  * successfully, -errno on failure.
     554             :  */
     555             : static int worker_pool_assign_id(struct worker_pool *pool)
     556             : {
     557             :         int ret;
     558             : 
     559             :         lockdep_assert_held(&wq_pool_mutex);
     560             : 
     561           3 :         ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE,
     562             :                         GFP_KERNEL);
     563           3 :         if (ret >= 0) {
     564           3 :                 pool->id = ret;
     565             :                 return 0;
     566             :         }
     567             :         return ret;
     568             : }
     569             : 
     570             : /**
     571             :  * unbound_pwq_by_node - return the unbound pool_workqueue for the given node
     572             :  * @wq: the target workqueue
     573             :  * @node: the node ID
     574             :  *
     575             :  * This must be called with any of wq_pool_mutex, wq->mutex or RCU
     576             :  * read locked.
     577             :  * If the pwq needs to be used beyond the locking in effect, the caller is
     578             :  * responsible for guaranteeing that the pwq stays online.
     579             :  *
     580             :  * Return: The unbound pool_workqueue for @node.
     581             :  */
     582             : static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq,
     583             :                                                   int node)
     584             : {
     585             :         assert_rcu_or_wq_mutex_or_pool_mutex(wq);
     586             : 
     587             :         /*
     588             :          * XXX: @node can be NUMA_NO_NODE if CPU goes offline while a
     589             :          * delayed item is pending.  The plan is to keep CPU -> NODE
     590             :          * mapping valid and stable across CPU on/offlines.  Once that
     591             :          * happens, this workaround can be removed.
     592             :          */
     593             :         if (unlikely(node == NUMA_NO_NODE))
     594             :                 return wq->dfl_pwq;
     595             : 
     596          27 :         return rcu_dereference_raw(wq->numa_pwq_tbl[node]);
     597             : }
     598             : 
     599             : static unsigned int work_color_to_flags(int color)
     600             : {
     601          53 :         return color << WORK_STRUCT_COLOR_SHIFT;
     602             : }
     603             : 
     604             : static int get_work_color(unsigned long work_data)
     605             : {
     606         108 :         return (work_data >> WORK_STRUCT_COLOR_SHIFT) &
     607             :                 ((1 << WORK_STRUCT_COLOR_BITS) - 1);
     608             : }
     609             : 
     610             : static int work_next_color(int color)
     611             : {
     612           0 :         return (color + 1) % WORK_NR_COLORS;
     613             : }
     614             : 
     615             : /*
     616             :  * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
     617             :  * contain the pointer to the queued pwq.  Once execution starts, the flag
     618             :  * is cleared and the high bits contain OFFQ flags and pool ID.
     619             :  *
     620             :  * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
     621             :  * and clear_work_data() can be used to set the pwq, pool or clear
     622             :  * work->data.  These functions should only be called while the work is
     623             :  * owned - ie. while the PENDING bit is set.
     624             :  *
     625             :  * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
     626             :  * corresponding to a work.  Pool is available once the work has been
     627             :  * queued anywhere after initialization until it is sync canceled.  pwq is
     628             :  * available only while the work item is queued.
     629             :  *
     630             :  * %WORK_OFFQ_CANCELING is used to mark a work item which is being
     631             :  * canceled.  While being canceled, a work item may have its PENDING set
     632             :  * but stay off timer and worklist for arbitrarily long and nobody should
     633             :  * try to steal the PENDING bit.
     634             :  */
     635         139 : static inline void set_work_data(struct work_struct *work, unsigned long data,
     636             :                                  unsigned long flags)
     637             : {
     638         278 :         WARN_ON_ONCE(!work_pending(work));
     639         278 :         atomic_long_set(&work->data, data | flags | work_static(work));
     640         139 : }
     641             : 
     642             : static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
     643             :                          unsigned long extra_flags)
     644             : {
     645          53 :         set_work_data(work, (unsigned long)pwq,
     646             :                       WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
     647             : }
     648             : 
     649             : static void set_work_pool_and_keep_pending(struct work_struct *work,
     650             :                                            int pool_id)
     651             : {
     652           0 :         set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
     653             :                       WORK_STRUCT_PENDING);
     654             : }
     655             : 
     656             : static void set_work_pool_and_clear_pending(struct work_struct *work,
     657             :                                             int pool_id)
     658             : {
     659             :         /*
     660             :          * The following wmb is paired with the implied mb in
     661             :          * test_and_set_bit(PENDING) and ensures all updates to @work made
     662             :          * here are visible to and precede any updates by the next PENDING
     663             :          * owner.
     664             :          */
     665          86 :         smp_wmb();
     666          86 :         set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
     667             :         /*
     668             :          * The following mb guarantees that previous clear of a PENDING bit
     669             :          * will not be reordered with any speculative LOADS or STORES from
     670             :          * work->current_func, which is executed afterwards.  This possible
     671             :          * reordering can lead to a missed execution on attempt to queue
     672             :          * the same @work.  E.g. consider this case:
     673             :          *
     674             :          *   CPU#0                         CPU#1
     675             :          *   ----------------------------  --------------------------------
     676             :          *
     677             :          * 1  STORE event_indicated
     678             :          * 2  queue_work_on() {
     679             :          * 3    test_and_set_bit(PENDING)
     680             :          * 4 }                             set_..._and_clear_pending() {
     681             :          * 5                                 set_work_data() # clear bit
     682             :          * 6                                 smp_mb()
     683             :          * 7                               work->current_func() {
     684             :          * 8                                  LOAD event_indicated
     685             :          *                                 }
     686             :          *
     687             :          * Without an explicit full barrier speculative LOAD on line 8 can
     688             :          * be executed before CPU#0 does STORE on line 1.  If that happens,
     689             :          * CPU#0 observes the PENDING bit is still set and new execution of
     690             :          * a @work is not queued in a hope, that CPU#1 will eventually
     691             :          * finish the queued @work.  Meanwhile CPU#1 does not see
     692             :          * event_indicated is set, because speculative LOAD was executed
     693             :          * before actual STORE.
     694             :          */
     695          86 :         smp_mb();
     696             : }
     697             : 
     698             : static void clear_work_data(struct work_struct *work)
     699             : {
     700           0 :         smp_wmb();      /* see set_work_pool_and_clear_pending() */
     701           0 :         set_work_data(work, WORK_STRUCT_NO_POOL, 0);
     702             : }
     703             : 
     704             : static struct pool_workqueue *get_work_pwq(struct work_struct *work)
     705             : {
     706         114 :         unsigned long data = atomic_long_read(&work->data);
     707             : 
     708          57 :         if (data & WORK_STRUCT_PWQ)
     709          55 :                 return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
     710             :         else
     711             :                 return NULL;
     712             : }
     713             : 
     714             : /**
     715             :  * get_work_pool - return the worker_pool a given work was associated with
     716             :  * @work: the work item of interest
     717             :  *
     718             :  * Pools are created and destroyed under wq_pool_mutex, and allows read
     719             :  * access under RCU read lock.  As such, this function should be
     720             :  * called under wq_pool_mutex or inside of a rcu_read_lock() region.
     721             :  *
     722             :  * All fields of the returned pool are accessible as long as the above
     723             :  * mentioned locking is in effect.  If the returned pool needs to be used
     724             :  * beyond the critical section, the caller is responsible for ensuring the
     725             :  * returned pool is and stays online.
     726             :  *
     727             :  * Return: The worker_pool @work was last associated with.  %NULL if none.
     728             :  */
     729          72 : static struct worker_pool *get_work_pool(struct work_struct *work)
     730             : {
     731         144 :         unsigned long data = atomic_long_read(&work->data);
     732             :         int pool_id;
     733             : 
     734             :         assert_rcu_or_pool_mutex();
     735             : 
     736          72 :         if (data & WORK_STRUCT_PWQ)
     737           2 :                 return ((struct pool_workqueue *)
     738           4 :                         (data & WORK_STRUCT_WQ_DATA_MASK))->pool;
     739             : 
     740          70 :         pool_id = data >> WORK_OFFQ_POOL_SHIFT;
     741          70 :         if (pool_id == WORK_OFFQ_POOL_NONE)
     742             :                 return NULL;
     743             : 
     744          31 :         return idr_find(&worker_pool_idr, pool_id);
     745             : }
     746             : 
     747             : /**
     748             :  * get_work_pool_id - return the worker pool ID a given work is associated with
     749             :  * @work: the work item of interest
     750             :  *
     751             :  * Return: The worker_pool ID @work was last associated with.
     752             :  * %WORK_OFFQ_POOL_NONE if none.
     753             :  */
     754             : static int get_work_pool_id(struct work_struct *work)
     755             : {
     756          66 :         unsigned long data = atomic_long_read(&work->data);
     757             : 
     758          33 :         if (data & WORK_STRUCT_PWQ)
     759           0 :                 return ((struct pool_workqueue *)
     760           0 :                         (data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
     761             : 
     762          33 :         return data >> WORK_OFFQ_POOL_SHIFT;
     763             : }
     764             : 
     765           0 : static void mark_work_canceling(struct work_struct *work)
     766             : {
     767           0 :         unsigned long pool_id = get_work_pool_id(work);
     768             : 
     769           0 :         pool_id <<= WORK_OFFQ_POOL_SHIFT;
     770           0 :         set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
     771           0 : }
     772             : 
     773             : static bool work_is_canceling(struct work_struct *work)
     774             : {
     775           0 :         unsigned long data = atomic_long_read(&work->data);
     776             : 
     777           0 :         return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
     778             : }
     779             : 
     780             : /*
     781             :  * Policy functions.  These define the policies on how the global worker
     782             :  * pools are managed.  Unless noted otherwise, these functions assume that
     783             :  * they're being called with pool->lock held.
     784             :  */
     785             : 
     786             : static bool __need_more_worker(struct worker_pool *pool)
     787             : {
     788             :         return !pool->nr_running;
     789             : }
     790             : 
     791             : /*
     792             :  * Need to wake up a worker?  Called from anything but currently
     793             :  * running workers.
     794             :  *
     795             :  * Note that, because unbound workers never contribute to nr_running, this
     796             :  * function will always return %true for unbound pools as long as the
     797             :  * worklist isn't empty.
     798             :  */
     799             : static bool need_more_worker(struct worker_pool *pool)
     800             : {
     801         224 :         return !list_empty(&pool->worklist) && __need_more_worker(pool);
     802             : }
     803             : 
     804             : /* Can I start working?  Called from busy but !running workers. */
     805             : static bool may_start_working(struct worker_pool *pool)
     806             : {
     807             :         return pool->nr_idle;
     808             : }
     809             : 
     810             : /* Do I need to keep working?  Called from currently running workers. */
     811             : static bool keep_working(struct worker_pool *pool)
     812             : {
     813         102 :         return !list_empty(&pool->worklist) && (pool->nr_running <= 1);
     814             : }
     815             : 
     816             : /* Do we need a new worker?  Called from manager. */
     817             : static bool need_to_create_worker(struct worker_pool *pool)
     818             : {
     819           2 :         return need_more_worker(pool) && !may_start_working(pool);
     820             : }
     821             : 
     822             : /* Do we have too many workers and should some go away? */
     823             : static bool too_many_workers(struct worker_pool *pool)
     824             : {
     825          60 :         bool managing = pool->flags & POOL_MANAGER_ACTIVE;
     826          60 :         int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
     827          60 :         int nr_busy = pool->nr_workers - nr_idle;
     828             : 
     829          60 :         return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
     830             : }
     831             : 
     832             : /*
     833             :  * Wake up functions.
     834             :  */
     835             : 
     836             : /* Return the first idle worker.  Called with pool->lock held. */
     837             : static struct worker *first_idle_worker(struct worker_pool *pool)
     838             : {
     839         106 :         if (unlikely(list_empty(&pool->idle_list)))
     840             :                 return NULL;
     841             : 
     842          53 :         return list_first_entry(&pool->idle_list, struct worker, entry);
     843             : }
     844             : 
     845             : /**
     846             :  * wake_up_worker - wake up an idle worker
     847             :  * @pool: worker pool to wake worker from
     848             :  *
     849             :  * Wake up the first idle worker of @pool.
     850             :  *
     851             :  * CONTEXT:
     852             :  * raw_spin_lock_irq(pool->lock).
     853             :  */
     854             : static void wake_up_worker(struct worker_pool *pool)
     855             : {
     856          53 :         struct worker *worker = first_idle_worker(pool);
     857             : 
     858          53 :         if (likely(worker))
     859          53 :                 wake_up_process(worker->task);
     860             : }
     861             : 
     862             : /**
     863             :  * wq_worker_running - a worker is running again
     864             :  * @task: task waking up
     865             :  *
     866             :  * This function is called when a worker returns from schedule()
     867             :  */
     868          52 : void wq_worker_running(struct task_struct *task)
     869             : {
     870          52 :         struct worker *worker = kthread_data(task);
     871             : 
     872          52 :         if (!worker->sleeping)
     873             :                 return;
     874             : 
     875             :         /*
     876             :          * If preempted by unbind_workers() between the WORKER_NOT_RUNNING check
     877             :          * and the nr_running increment below, we may ruin the nr_running reset
     878             :          * and leave with an unexpected pool->nr_running == 1 on the newly unbound
     879             :          * pool. Protect against such race.
     880             :          */
     881           0 :         preempt_disable();
     882           0 :         if (!(worker->flags & WORKER_NOT_RUNNING))
     883           0 :                 worker->pool->nr_running++;
     884           0 :         preempt_enable();
     885           0 :         worker->sleeping = 0;
     886             : }
     887             : 
     888             : /**
     889             :  * wq_worker_sleeping - a worker is going to sleep
     890             :  * @task: task going to sleep
     891             :  *
     892             :  * This function is called from schedule() when a busy worker is
     893             :  * going to sleep.
     894             :  */
     895          61 : void wq_worker_sleeping(struct task_struct *task)
     896             : {
     897          61 :         struct worker *worker = kthread_data(task);
     898             :         struct worker_pool *pool;
     899             : 
     900             :         /*
     901             :          * Rescuers, which may not have all the fields set up like normal
     902             :          * workers, also reach here, let's not access anything before
     903             :          * checking NOT_RUNNING.
     904             :          */
     905          61 :         if (worker->flags & WORKER_NOT_RUNNING)
     906             :                 return;
     907             : 
     908           0 :         pool = worker->pool;
     909             : 
     910             :         /* Return if preempted before wq_worker_running() was reached */
     911           0 :         if (worker->sleeping)
     912             :                 return;
     913             : 
     914           0 :         worker->sleeping = 1;
     915           0 :         raw_spin_lock_irq(&pool->lock);
     916             : 
     917             :         /*
     918             :          * Recheck in case unbind_workers() preempted us. We don't
     919             :          * want to decrement nr_running after the worker is unbound
     920             :          * and nr_running has been reset.
     921             :          */
     922           0 :         if (worker->flags & WORKER_NOT_RUNNING) {
     923           0 :                 raw_spin_unlock_irq(&pool->lock);
     924           0 :                 return;
     925             :         }
     926             : 
     927           0 :         pool->nr_running--;
     928           0 :         if (need_more_worker(pool))
     929             :                 wake_up_worker(pool);
     930           0 :         raw_spin_unlock_irq(&pool->lock);
     931             : }
     932             : 
     933             : /**
     934             :  * wq_worker_last_func - retrieve worker's last work function
     935             :  * @task: Task to retrieve last work function of.
     936             :  *
     937             :  * Determine the last function a worker executed. This is called from
     938             :  * the scheduler to get a worker's last known identity.
     939             :  *
     940             :  * CONTEXT:
     941             :  * raw_spin_lock_irq(rq->lock)
     942             :  *
     943             :  * This function is called during schedule() when a kworker is going
     944             :  * to sleep. It's used by psi to identify aggregation workers during
     945             :  * dequeuing, to allow periodic aggregation to shut-off when that
     946             :  * worker is the last task in the system or cgroup to go to sleep.
     947             :  *
     948             :  * As this function doesn't involve any workqueue-related locking, it
     949             :  * only returns stable values when called from inside the scheduler's
     950             :  * queuing and dequeuing paths, when @task, which must be a kworker,
     951             :  * is guaranteed to not be processing any works.
     952             :  *
     953             :  * Return:
     954             :  * The last work function %current executed as a worker, NULL if it
     955             :  * hasn't executed any work yet.
     956             :  */
     957           0 : work_func_t wq_worker_last_func(struct task_struct *task)
     958             : {
     959           0 :         struct worker *worker = kthread_data(task);
     960             : 
     961           0 :         return worker->last_func;
     962             : }
     963             : 
     964             : /**
     965             :  * worker_set_flags - set worker flags and adjust nr_running accordingly
     966             :  * @worker: self
     967             :  * @flags: flags to set
     968             :  *
     969             :  * Set @flags in @worker->flags and adjust nr_running accordingly.
     970             :  *
     971             :  * CONTEXT:
     972             :  * raw_spin_lock_irq(pool->lock)
     973             :  */
     974          50 : static inline void worker_set_flags(struct worker *worker, unsigned int flags)
     975             : {
     976          50 :         struct worker_pool *pool = worker->pool;
     977             : 
     978         100 :         WARN_ON_ONCE(worker->task != current);
     979             : 
     980             :         /* If transitioning into NOT_RUNNING, adjust nr_running. */
     981         100 :         if ((flags & WORKER_NOT_RUNNING) &&
     982          50 :             !(worker->flags & WORKER_NOT_RUNNING)) {
     983          23 :                 pool->nr_running--;
     984             :         }
     985             : 
     986          50 :         worker->flags |= flags;
     987          50 : }
     988             : 
     989             : /**
     990             :  * worker_clr_flags - clear worker flags and adjust nr_running accordingly
     991             :  * @worker: self
     992             :  * @flags: flags to clear
     993             :  *
     994             :  * Clear @flags in @worker->flags and adjust nr_running accordingly.
     995             :  *
     996             :  * CONTEXT:
     997             :  * raw_spin_lock_irq(pool->lock)
     998             :  */
     999         105 : static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
    1000             : {
    1001         105 :         struct worker_pool *pool = worker->pool;
    1002         105 :         unsigned int oflags = worker->flags;
    1003             : 
    1004         210 :         WARN_ON_ONCE(worker->task != current);
    1005             : 
    1006         105 :         worker->flags &= ~flags;
    1007             : 
    1008             :         /*
    1009             :          * If transitioning out of NOT_RUNNING, increment nr_running.  Note
    1010             :          * that the nested NOT_RUNNING is not a noop.  NOT_RUNNING is mask
    1011             :          * of multiple flags, not a single flag.
    1012             :          */
    1013         105 :         if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
    1014          50 :                 if (!(worker->flags & WORKER_NOT_RUNNING))
    1015          23 :                         pool->nr_running++;
    1016         105 : }
    1017             : 
    1018             : /**
    1019             :  * find_worker_executing_work - find worker which is executing a work
    1020             :  * @pool: pool of interest
    1021             :  * @work: work to find worker for
    1022             :  *
    1023             :  * Find a worker which is executing @work on @pool by searching
    1024             :  * @pool->busy_hash which is keyed by the address of @work.  For a worker
    1025             :  * to match, its current execution should match the address of @work and
    1026             :  * its work function.  This is to avoid unwanted dependency between
    1027             :  * unrelated work executions through a work item being recycled while still
    1028             :  * being executed.
    1029             :  *
    1030             :  * This is a bit tricky.  A work item may be freed once its execution
    1031             :  * starts and nothing prevents the freed area from being recycled for
    1032             :  * another work item.  If the same work item address ends up being reused
    1033             :  * before the original execution finishes, workqueue will identify the
    1034             :  * recycled work item as currently executing and make it wait until the
    1035             :  * current execution finishes, introducing an unwanted dependency.
    1036             :  *
    1037             :  * This function checks the work item address and work function to avoid
    1038             :  * false positives.  Note that this isn't complete as one may construct a
    1039             :  * work function which can introduce dependency onto itself through a
    1040             :  * recycled work item.  Well, if somebody wants to shoot oneself in the
    1041             :  * foot that badly, there's only so much we can do, and if such deadlock
    1042             :  * actually occurs, it should be easy to locate the culprit work function.
    1043             :  *
    1044             :  * CONTEXT:
    1045             :  * raw_spin_lock_irq(pool->lock).
    1046             :  *
    1047             :  * Return:
    1048             :  * Pointer to worker which is executing @work if found, %NULL
    1049             :  * otherwise.
    1050             :  */
    1051             : static struct worker *find_worker_executing_work(struct worker_pool *pool,
    1052             :                                                  struct work_struct *work)
    1053             : {
    1054             :         struct worker *worker;
    1055             : 
    1056         110 :         hash_for_each_possible(pool->busy_hash, worker, hentry,
    1057             :                                (unsigned long)work)
    1058           0 :                 if (worker->current_work == work &&
    1059           0 :                     worker->current_func == work->func)
    1060             :                         return worker;
    1061             : 
    1062             :         return NULL;
    1063             : }
    1064             : 
    1065             : /**
    1066             :  * move_linked_works - move linked works to a list
    1067             :  * @work: start of series of works to be scheduled
    1068             :  * @head: target list to append @work to
    1069             :  * @nextp: out parameter for nested worklist walking
    1070             :  *
    1071             :  * Schedule linked works starting from @work to @head.  Work series to
    1072             :  * be scheduled starts at @work and includes any consecutive work with
    1073             :  * WORK_STRUCT_LINKED set in its predecessor.
    1074             :  *
    1075             :  * If @nextp is not NULL, it's updated to point to the next work of
    1076             :  * the last scheduled work.  This allows move_linked_works() to be
    1077             :  * nested inside outer list_for_each_entry_safe().
    1078             :  *
    1079             :  * CONTEXT:
    1080             :  * raw_spin_lock_irq(pool->lock).
    1081             :  */
    1082             : static void move_linked_works(struct work_struct *work, struct list_head *head,
    1083             :                               struct work_struct **nextp)
    1084             : {
    1085             :         struct work_struct *n;
    1086             : 
    1087             :         /*
    1088             :          * Linked worklist will always end before the end of the list,
    1089             :          * use NULL for list head.
    1090             :          */
    1091           4 :         list_for_each_entry_safe_from(work, n, NULL, entry) {
    1092           8 :                 list_move_tail(&work->entry, head);
    1093           4 :                 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
    1094             :                         break;
    1095             :         }
    1096             : 
    1097             :         /*
    1098             :          * If we're already inside safe list traversal and have moved
    1099             :          * multiple works to the scheduled queue, the next position
    1100             :          * needs to be updated.
    1101             :          */
    1102             :         if (nextp)
    1103             :                 *nextp = n;
    1104             : }
    1105             : 
    1106             : /**
    1107             :  * get_pwq - get an extra reference on the specified pool_workqueue
    1108             :  * @pwq: pool_workqueue to get
    1109             :  *
    1110             :  * Obtain an extra reference on @pwq.  The caller should guarantee that
    1111             :  * @pwq has positive refcnt and be holding the matching pool->lock.
    1112             :  */
    1113          53 : static void get_pwq(struct pool_workqueue *pwq)
    1114             : {
    1115             :         lockdep_assert_held(&pwq->pool->lock);
    1116          53 :         WARN_ON_ONCE(pwq->refcnt <= 0);
    1117          53 :         pwq->refcnt++;
    1118          53 : }
    1119             : 
    1120             : /**
    1121             :  * put_pwq - put a pool_workqueue reference
    1122             :  * @pwq: pool_workqueue to put
    1123             :  *
    1124             :  * Drop a reference of @pwq.  If its refcnt reaches zero, schedule its
    1125             :  * destruction.  The caller should be holding the matching pool->lock.
    1126             :  */
    1127          53 : static void put_pwq(struct pool_workqueue *pwq)
    1128             : {
    1129             :         lockdep_assert_held(&pwq->pool->lock);
    1130          53 :         if (likely(--pwq->refcnt))
    1131             :                 return;
    1132           0 :         if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND)))
    1133             :                 return;
    1134             :         /*
    1135             :          * @pwq can't be released under pool->lock, bounce to
    1136             :          * pwq_unbound_release_workfn().  This never recurses on the same
    1137             :          * pool->lock as this path is taken only for unbound workqueues and
    1138             :          * the release work item is scheduled on a per-cpu workqueue.  To
    1139             :          * avoid lockdep warning, unbound pool->locks are given lockdep
    1140             :          * subclass of 1 in get_unbound_pool().
    1141             :          */
    1142           0 :         schedule_work(&pwq->unbound_release_work);
    1143             : }
    1144             : 
    1145             : /**
    1146             :  * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
    1147             :  * @pwq: pool_workqueue to put (can be %NULL)
    1148             :  *
    1149             :  * put_pwq() with locking.  This function also allows %NULL @pwq.
    1150             :  */
    1151           6 : static void put_pwq_unlocked(struct pool_workqueue *pwq)
    1152             : {
    1153           6 :         if (pwq) {
    1154             :                 /*
    1155             :                  * As both pwqs and pools are RCU protected, the
    1156             :                  * following lock operations are safe.
    1157             :                  */
    1158           0 :                 raw_spin_lock_irq(&pwq->pool->lock);
    1159           0 :                 put_pwq(pwq);
    1160           0 :                 raw_spin_unlock_irq(&pwq->pool->lock);
    1161             :         }
    1162           6 : }
    1163             : 
    1164           0 : static void pwq_activate_inactive_work(struct work_struct *work)
    1165             : {
    1166           0 :         struct pool_workqueue *pwq = get_work_pwq(work);
    1167             : 
    1168           0 :         trace_workqueue_activate_work(work);
    1169           0 :         if (list_empty(&pwq->pool->worklist))
    1170           0 :                 pwq->pool->watchdog_ts = jiffies;
    1171           0 :         move_linked_works(work, &pwq->pool->worklist, NULL);
    1172           0 :         __clear_bit(WORK_STRUCT_INACTIVE_BIT, work_data_bits(work));
    1173           0 :         pwq->nr_active++;
    1174           0 : }
    1175             : 
    1176             : static void pwq_activate_first_inactive(struct pool_workqueue *pwq)
    1177             : {
    1178           0 :         struct work_struct *work = list_first_entry(&pwq->inactive_works,
    1179             :                                                     struct work_struct, entry);
    1180             : 
    1181           0 :         pwq_activate_inactive_work(work);
    1182             : }
    1183             : 
    1184             : /**
    1185             :  * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
    1186             :  * @pwq: pwq of interest
    1187             :  * @work_data: work_data of work which left the queue
    1188             :  *
    1189             :  * A work either has completed or is removed from pending queue,
    1190             :  * decrement nr_in_flight of its pwq and handle workqueue flushing.
    1191             :  *
    1192             :  * CONTEXT:
    1193             :  * raw_spin_lock_irq(pool->lock).
    1194             :  */
    1195          53 : static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, unsigned long work_data)
    1196             : {
    1197          53 :         int color = get_work_color(work_data);
    1198             : 
    1199          53 :         if (!(work_data & WORK_STRUCT_INACTIVE)) {
    1200          51 :                 pwq->nr_active--;
    1201         102 :                 if (!list_empty(&pwq->inactive_works)) {
    1202             :                         /* one down, submit an inactive one */
    1203           0 :                         if (pwq->nr_active < pwq->max_active)
    1204           0 :                                 pwq_activate_first_inactive(pwq);
    1205             :                 }
    1206             :         }
    1207             : 
    1208          53 :         pwq->nr_in_flight[color]--;
    1209             : 
    1210             :         /* is flush in progress and are we at the flushing tip? */
    1211          53 :         if (likely(pwq->flush_color != color))
    1212             :                 goto out_put;
    1213             : 
    1214             :         /* are there still in-flight works? */
    1215           0 :         if (pwq->nr_in_flight[color])
    1216             :                 goto out_put;
    1217             : 
    1218             :         /* this pwq is done, clear flush_color */
    1219           0 :         pwq->flush_color = -1;
    1220             : 
    1221             :         /*
    1222             :          * If this was the last pwq, wake up the first flusher.  It
    1223             :          * will handle the rest.
    1224             :          */
    1225           0 :         if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
    1226           0 :                 complete(&pwq->wq->first_flusher->done);
    1227             : out_put:
    1228          53 :         put_pwq(pwq);
    1229          53 : }
    1230             : 
    1231             : /**
    1232             :  * try_to_grab_pending - steal work item from worklist and disable irq
    1233             :  * @work: work item to steal
    1234             :  * @is_dwork: @work is a delayed_work
    1235             :  * @flags: place to store irq state
    1236             :  *
    1237             :  * Try to grab PENDING bit of @work.  This function can handle @work in any
    1238             :  * stable state - idle, on timer or on worklist.
    1239             :  *
    1240             :  * Return:
    1241             :  *
    1242             :  *  ========    ================================================================
    1243             :  *  1           if @work was pending and we successfully stole PENDING
    1244             :  *  0           if @work was idle and we claimed PENDING
    1245             :  *  -EAGAIN     if PENDING couldn't be grabbed at the moment, safe to busy-retry
    1246             :  *  -ENOENT     if someone else is canceling @work, this state may persist
    1247             :  *              for arbitrarily long
    1248             :  *  ========    ================================================================
    1249             :  *
    1250             :  * Note:
    1251             :  * On >= 0 return, the caller owns @work's PENDING bit.  To avoid getting
    1252             :  * interrupted while holding PENDING and @work off queue, irq must be
    1253             :  * disabled on entry.  This, combined with delayed_work->timer being
    1254             :  * irqsafe, ensures that we return -EAGAIN for finite short period of time.
    1255             :  *
    1256             :  * On successful return, >= 0, irq is disabled and the caller is
    1257             :  * responsible for releasing it using local_irq_restore(*@flags).
    1258             :  *
    1259             :  * This function is safe to call from any context including IRQ handler.
    1260             :  */
    1261          33 : static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
    1262             :                                unsigned long *flags)
    1263             : {
    1264             :         struct worker_pool *pool;
    1265             :         struct pool_workqueue *pwq;
    1266             : 
    1267          33 :         local_irq_save(*flags);
    1268             : 
    1269             :         /* try to steal the timer if it exists */
    1270          33 :         if (is_dwork) {
    1271          33 :                 struct delayed_work *dwork = to_delayed_work(work);
    1272             : 
    1273             :                 /*
    1274             :                  * dwork->timer is irqsafe.  If del_timer() fails, it's
    1275             :                  * guaranteed that the timer is not queued anywhere and not
    1276             :                  * running on the local CPU.
    1277             :                  */
    1278          66 :                 if (likely(del_timer(&dwork->timer)))
    1279             :                         return 1;
    1280             :         }
    1281             : 
    1282             :         /* try to claim PENDING the normal way */
    1283          66 :         if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
    1284             :                 return 0;
    1285             : 
    1286             :         rcu_read_lock();
    1287             :         /*
    1288             :          * The queueing is in progress, or it is already queued. Try to
    1289             :          * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
    1290             :          */
    1291           0 :         pool = get_work_pool(work);
    1292           0 :         if (!pool)
    1293             :                 goto fail;
    1294             : 
    1295           0 :         raw_spin_lock(&pool->lock);
    1296             :         /*
    1297             :          * work->data is guaranteed to point to pwq only while the work
    1298             :          * item is queued on pwq->wq, and both updating work->data to point
    1299             :          * to pwq on queueing and to pool on dequeueing are done under
    1300             :          * pwq->pool->lock.  This in turn guarantees that, if work->data
    1301             :          * points to pwq which is associated with a locked pool, the work
    1302             :          * item is currently queued on that pool.
    1303             :          */
    1304           0 :         pwq = get_work_pwq(work);
    1305           0 :         if (pwq && pwq->pool == pool) {
    1306           0 :                 debug_work_deactivate(work);
    1307             : 
    1308             :                 /*
    1309             :                  * A cancelable inactive work item must be in the
    1310             :                  * pwq->inactive_works since a queued barrier can't be
    1311             :                  * canceled (see the comments in insert_wq_barrier()).
    1312             :                  *
    1313             :                  * An inactive work item cannot be grabbed directly because
    1314             :                  * it might have linked barrier work items which, if left
    1315             :                  * on the inactive_works list, will confuse pwq->nr_active
    1316             :                  * management later on and cause stall.  Make sure the work
    1317             :                  * item is activated before grabbing.
    1318             :                  */
    1319           0 :                 if (*work_data_bits(work) & WORK_STRUCT_INACTIVE)
    1320           0 :                         pwq_activate_inactive_work(work);
    1321             : 
    1322           0 :                 list_del_init(&work->entry);
    1323           0 :                 pwq_dec_nr_in_flight(pwq, *work_data_bits(work));
    1324             : 
    1325             :                 /* work->data points to pwq iff queued, point to pool */
    1326           0 :                 set_work_pool_and_keep_pending(work, pool->id);
    1327             : 
    1328           0 :                 raw_spin_unlock(&pool->lock);
    1329             :                 rcu_read_unlock();
    1330           0 :                 return 1;
    1331             :         }
    1332           0 :         raw_spin_unlock(&pool->lock);
    1333             : fail:
    1334             :         rcu_read_unlock();
    1335           0 :         local_irq_restore(*flags);
    1336           0 :         if (work_is_canceling(work))
    1337             :                 return -ENOENT;
    1338             :         cpu_relax();
    1339           0 :         return -EAGAIN;
    1340             : }
    1341             : 
    1342             : /**
    1343             :  * insert_work - insert a work into a pool
    1344             :  * @pwq: pwq @work belongs to
    1345             :  * @work: work to insert
    1346             :  * @head: insertion point
    1347             :  * @extra_flags: extra WORK_STRUCT_* flags to set
    1348             :  *
    1349             :  * Insert @work which belongs to @pwq after @head.  @extra_flags is or'd to
    1350             :  * work_struct flags.
    1351             :  *
    1352             :  * CONTEXT:
    1353             :  * raw_spin_lock_irq(pool->lock).
    1354             :  */
    1355          53 : static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
    1356             :                         struct list_head *head, unsigned int extra_flags)
    1357             : {
    1358          53 :         struct worker_pool *pool = pwq->pool;
    1359             : 
    1360             :         /* record the work call stack in order to print it in KASAN reports */
    1361          53 :         kasan_record_aux_stack_noalloc(work);
    1362             : 
    1363             :         /* we own @work, set data and link */
    1364         106 :         set_work_pwq(work, pwq, extra_flags);
    1365         106 :         list_add_tail(&work->entry, head);
    1366          53 :         get_pwq(pwq);
    1367             : 
    1368          53 :         if (__need_more_worker(pool))
    1369             :                 wake_up_worker(pool);
    1370          53 : }
    1371             : 
    1372             : /*
    1373             :  * Test whether @work is being queued from another work executing on the
    1374             :  * same workqueue.
    1375             :  */
    1376             : static bool is_chained_work(struct workqueue_struct *wq)
    1377             : {
    1378             :         struct worker *worker;
    1379             : 
    1380           0 :         worker = current_wq_worker();
    1381             :         /*
    1382             :          * Return %true iff I'm a worker executing a work item on @wq.  If
    1383             :          * I'm @worker, it's safe to dereference it without locking.
    1384             :          */
    1385           0 :         return worker && worker->current_pwq->wq == wq;
    1386             : }
    1387             : 
    1388             : /*
    1389             :  * When queueing an unbound work item to a wq, prefer local CPU if allowed
    1390             :  * by wq_unbound_cpumask.  Otherwise, round robin among the allowed ones to
    1391             :  * avoid perturbing sensitive tasks.
    1392             :  */
    1393          27 : static int wq_select_unbound_cpu(int cpu)
    1394             : {
    1395             :         static bool printed_dbg_warning;
    1396             :         int new_cpu;
    1397             : 
    1398          27 :         if (likely(!wq_debug_force_rr_cpu)) {
    1399          27 :                 if (cpumask_test_cpu(cpu, wq_unbound_cpumask))
    1400             :                         return cpu;
    1401           0 :         } else if (!printed_dbg_warning) {
    1402           0 :                 pr_warn("workqueue: round-robin CPU selection forced, expect performance impact\n");
    1403           0 :                 printed_dbg_warning = true;
    1404             :         }
    1405             : 
    1406           0 :         if (cpumask_empty(wq_unbound_cpumask))
    1407             :                 return cpu;
    1408             : 
    1409           0 :         new_cpu = __this_cpu_read(wq_rr_cpu_last);
    1410           0 :         new_cpu = cpumask_next_and(new_cpu, wq_unbound_cpumask, cpu_online_mask);
    1411           0 :         if (unlikely(new_cpu >= nr_cpu_ids)) {
    1412           0 :                 new_cpu = cpumask_first_and(wq_unbound_cpumask, cpu_online_mask);
    1413           0 :                 if (unlikely(new_cpu >= nr_cpu_ids))
    1414             :                         return cpu;
    1415             :         }
    1416           0 :         __this_cpu_write(wq_rr_cpu_last, new_cpu);
    1417             : 
    1418           0 :         return new_cpu;
    1419             : }
    1420             : 
    1421          51 : static void __queue_work(int cpu, struct workqueue_struct *wq,
    1422             :                          struct work_struct *work)
    1423             : {
    1424             :         struct pool_workqueue *pwq;
    1425             :         struct worker_pool *last_pool;
    1426             :         struct list_head *worklist;
    1427             :         unsigned int work_flags;
    1428          51 :         unsigned int req_cpu = cpu;
    1429             : 
    1430             :         /*
    1431             :          * While a work item is PENDING && off queue, a task trying to
    1432             :          * steal the PENDING will busy-loop waiting for it to either get
    1433             :          * queued or lose PENDING.  Grabbing PENDING and queueing should
    1434             :          * happen with IRQ disabled.
    1435             :          */
    1436             :         lockdep_assert_irqs_disabled();
    1437             : 
    1438             : 
    1439             :         /*
    1440             :          * For a draining wq, only works from the same workqueue are
    1441             :          * allowed. The __WQ_DESTROYING helps to spot the issue that
    1442             :          * queues a new work item to a wq after destroy_workqueue(wq).
    1443             :          */
    1444          51 :         if (unlikely(wq->flags & (__WQ_DESTROYING | __WQ_DRAINING) &&
    1445             :                      WARN_ON_ONCE(!is_chained_work(wq))))
    1446             :                 return;
    1447             :         rcu_read_lock();
    1448             : retry:
    1449             :         /* pwq which will be used unless @work is executing elsewhere */
    1450          51 :         if (wq->flags & WQ_UNBOUND) {
    1451          27 :                 if (req_cpu == WORK_CPU_UNBOUND)
    1452          27 :                         cpu = wq_select_unbound_cpu(raw_smp_processor_id());
    1453          27 :                 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
    1454             :         } else {
    1455          24 :                 if (req_cpu == WORK_CPU_UNBOUND)
    1456          24 :                         cpu = raw_smp_processor_id();
    1457          24 :                 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
    1458             :         }
    1459             : 
    1460             :         /*
    1461             :          * If @work was previously on a different pool, it might still be
    1462             :          * running there, in which case the work needs to be queued on that
    1463             :          * pool to guarantee non-reentrancy.
    1464             :          */
    1465          51 :         last_pool = get_work_pool(work);
    1466          51 :         if (last_pool && last_pool != pwq->pool) {
    1467             :                 struct worker *worker;
    1468             : 
    1469           0 :                 raw_spin_lock(&last_pool->lock);
    1470             : 
    1471           0 :                 worker = find_worker_executing_work(last_pool, work);
    1472             : 
    1473           0 :                 if (worker && worker->current_pwq->wq == wq) {
    1474             :                         pwq = worker->current_pwq;
    1475             :                 } else {
    1476             :                         /* meh... not running there, queue here */
    1477           0 :                         raw_spin_unlock(&last_pool->lock);
    1478           0 :                         raw_spin_lock(&pwq->pool->lock);
    1479             :                 }
    1480             :         } else {
    1481          51 :                 raw_spin_lock(&pwq->pool->lock);
    1482             :         }
    1483             : 
    1484             :         /*
    1485             :          * pwq is determined and locked.  For unbound pools, we could have
    1486             :          * raced with pwq release and it could already be dead.  If its
    1487             :          * refcnt is zero, repeat pwq selection.  Note that pwqs never die
    1488             :          * without another pwq replacing it in the numa_pwq_tbl or while
    1489             :          * work items are executing on it, so the retrying is guaranteed to
    1490             :          * make forward-progress.
    1491             :          */
    1492          51 :         if (unlikely(!pwq->refcnt)) {
    1493           0 :                 if (wq->flags & WQ_UNBOUND) {
    1494           0 :                         raw_spin_unlock(&pwq->pool->lock);
    1495             :                         cpu_relax();
    1496             :                         goto retry;
    1497             :                 }
    1498             :                 /* oops */
    1499           0 :                 WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
    1500             :                           wq->name, cpu);
    1501             :         }
    1502             : 
    1503             :         /* pwq determined, queue */
    1504          51 :         trace_workqueue_queue_work(req_cpu, pwq, work);
    1505             : 
    1506         102 :         if (WARN_ON(!list_empty(&work->entry)))
    1507             :                 goto out;
    1508             : 
    1509          51 :         pwq->nr_in_flight[pwq->work_color]++;
    1510         102 :         work_flags = work_color_to_flags(pwq->work_color);
    1511             : 
    1512          51 :         if (likely(pwq->nr_active < pwq->max_active)) {
    1513          51 :                 trace_workqueue_activate_work(work);
    1514          51 :                 pwq->nr_active++;
    1515          51 :                 worklist = &pwq->pool->worklist;
    1516          51 :                 if (list_empty(worklist))
    1517          50 :                         pwq->pool->watchdog_ts = jiffies;
    1518             :         } else {
    1519           0 :                 work_flags |= WORK_STRUCT_INACTIVE;
    1520           0 :                 worklist = &pwq->inactive_works;
    1521             :         }
    1522             : 
    1523          51 :         debug_work_activate(work);
    1524          51 :         insert_work(pwq, work, worklist, work_flags);
    1525             : 
    1526             : out:
    1527          51 :         raw_spin_unlock(&pwq->pool->lock);
    1528             :         rcu_read_unlock();
    1529             : }
    1530             : 
    1531             : /**
    1532             :  * queue_work_on - queue work on specific cpu
    1533             :  * @cpu: CPU number to execute work on
    1534             :  * @wq: workqueue to use
    1535             :  * @work: work to queue
    1536             :  *
    1537             :  * We queue the work to a specific CPU, the caller must ensure it
    1538             :  * can't go away.  Callers that fail to ensure that the specified
    1539             :  * CPU cannot go away will execute on a randomly chosen CPU.
    1540             :  *
    1541             :  * Return: %false if @work was already on a queue, %true otherwise.
    1542             :  */
    1543          44 : bool queue_work_on(int cpu, struct workqueue_struct *wq,
    1544             :                    struct work_struct *work)
    1545             : {
    1546          44 :         bool ret = false;
    1547             :         unsigned long flags;
    1548             : 
    1549          44 :         local_irq_save(flags);
    1550             : 
    1551          88 :         if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
    1552          43 :                 __queue_work(cpu, wq, work);
    1553          43 :                 ret = true;
    1554             :         }
    1555             : 
    1556          88 :         local_irq_restore(flags);
    1557          44 :         return ret;
    1558             : }
    1559             : EXPORT_SYMBOL(queue_work_on);
    1560             : 
    1561             : /**
    1562             :  * workqueue_select_cpu_near - Select a CPU based on NUMA node
    1563             :  * @node: NUMA node ID that we want to select a CPU from
    1564             :  *
    1565             :  * This function will attempt to find a "random" cpu available on a given
    1566             :  * node. If there are no CPUs available on the given node it will return
    1567             :  * WORK_CPU_UNBOUND indicating that we should just schedule to any
    1568             :  * available CPU if we need to schedule this work.
    1569             :  */
    1570             : static int workqueue_select_cpu_near(int node)
    1571             : {
    1572             :         int cpu;
    1573             : 
    1574             :         /* No point in doing this if NUMA isn't enabled for workqueues */
    1575           0 :         if (!wq_numa_enabled)
    1576             :                 return WORK_CPU_UNBOUND;
    1577             : 
    1578             :         /* Delay binding to CPU if node is not valid or online */
    1579           0 :         if (node < 0 || node >= MAX_NUMNODES || !node_online(node))
    1580             :                 return WORK_CPU_UNBOUND;
    1581             : 
    1582             :         /* Use local node/cpu if we are already there */
    1583             :         cpu = raw_smp_processor_id();
    1584             :         if (node == cpu_to_node(cpu))
    1585             :                 return cpu;
    1586             : 
    1587             :         /* Use "random" otherwise know as "first" online CPU of node */
    1588             :         cpu = cpumask_any_and(cpumask_of_node(node), cpu_online_mask);
    1589             : 
    1590             :         /* If CPU is valid return that, otherwise just defer */
    1591             :         return cpu < nr_cpu_ids ? cpu : WORK_CPU_UNBOUND;
    1592             : }
    1593             : 
    1594             : /**
    1595             :  * queue_work_node - queue work on a "random" cpu for a given NUMA node
    1596             :  * @node: NUMA node that we are targeting the work for
    1597             :  * @wq: workqueue to use
    1598             :  * @work: work to queue
    1599             :  *
    1600             :  * We queue the work to a "random" CPU within a given NUMA node. The basic
    1601             :  * idea here is to provide a way to somehow associate work with a given
    1602             :  * NUMA node.
    1603             :  *
    1604             :  * This function will only make a best effort attempt at getting this onto
    1605             :  * the right NUMA node. If no node is requested or the requested node is
    1606             :  * offline then we just fall back to standard queue_work behavior.
    1607             :  *
    1608             :  * Currently the "random" CPU ends up being the first available CPU in the
    1609             :  * intersection of cpu_online_mask and the cpumask of the node, unless we
    1610             :  * are running on the node. In that case we just use the current CPU.
    1611             :  *
    1612             :  * Return: %false if @work was already on a queue, %true otherwise.
    1613             :  */
    1614           0 : bool queue_work_node(int node, struct workqueue_struct *wq,
    1615             :                      struct work_struct *work)
    1616             : {
    1617             :         unsigned long flags;
    1618           0 :         bool ret = false;
    1619             : 
    1620             :         /*
    1621             :          * This current implementation is specific to unbound workqueues.
    1622             :          * Specifically we only return the first available CPU for a given
    1623             :          * node instead of cycling through individual CPUs within the node.
    1624             :          *
    1625             :          * If this is used with a per-cpu workqueue then the logic in
    1626             :          * workqueue_select_cpu_near would need to be updated to allow for
    1627             :          * some round robin type logic.
    1628             :          */
    1629           0 :         WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND));
    1630             : 
    1631           0 :         local_irq_save(flags);
    1632             : 
    1633           0 :         if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
    1634           0 :                 int cpu = workqueue_select_cpu_near(node);
    1635             : 
    1636           0 :                 __queue_work(cpu, wq, work);
    1637           0 :                 ret = true;
    1638             :         }
    1639             : 
    1640           0 :         local_irq_restore(flags);
    1641           0 :         return ret;
    1642             : }
    1643             : EXPORT_SYMBOL_GPL(queue_work_node);
    1644             : 
    1645           8 : void delayed_work_timer_fn(struct timer_list *t)
    1646             : {
    1647           8 :         struct delayed_work *dwork = from_timer(dwork, t, timer);
    1648             : 
    1649             :         /* should have been called from irqsafe timer with irq already off */
    1650           8 :         __queue_work(dwork->cpu, dwork->wq, &dwork->work);
    1651           8 : }
    1652             : EXPORT_SYMBOL(delayed_work_timer_fn);
    1653             : 
    1654          10 : static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
    1655             :                                 struct delayed_work *dwork, unsigned long delay)
    1656             : {
    1657          10 :         struct timer_list *timer = &dwork->timer;
    1658          10 :         struct work_struct *work = &dwork->work;
    1659             : 
    1660          10 :         WARN_ON_ONCE(!wq);
    1661          10 :         WARN_ON_ONCE(timer->function != delayed_work_timer_fn);
    1662          10 :         WARN_ON_ONCE(timer_pending(timer));
    1663          20 :         WARN_ON_ONCE(!list_empty(&work->entry));
    1664             : 
    1665             :         /*
    1666             :          * If @delay is 0, queue @dwork->work immediately.  This is for
    1667             :          * both optimization and correctness.  The earliest @timer can
    1668             :          * expire is on the closest next tick and delayed_work users depend
    1669             :          * on that there's no such delay when @delay is 0.
    1670             :          */
    1671          10 :         if (!delay) {
    1672           0 :                 __queue_work(cpu, wq, &dwork->work);
    1673           0 :                 return;
    1674             :         }
    1675             : 
    1676          10 :         dwork->wq = wq;
    1677          10 :         dwork->cpu = cpu;
    1678          10 :         timer->expires = jiffies + delay;
    1679             : 
    1680          10 :         if (unlikely(cpu != WORK_CPU_UNBOUND))
    1681           0 :                 add_timer_on(timer, cpu);
    1682             :         else
    1683          10 :                 add_timer(timer);
    1684             : }
    1685             : 
    1686             : /**
    1687             :  * queue_delayed_work_on - queue work on specific CPU after delay
    1688             :  * @cpu: CPU number to execute work on
    1689             :  * @wq: workqueue to use
    1690             :  * @dwork: work to queue
    1691             :  * @delay: number of jiffies to wait before queueing
    1692             :  *
    1693             :  * Return: %false if @work was already on a queue, %true otherwise.  If
    1694             :  * @delay is zero and @dwork is idle, it will be scheduled for immediate
    1695             :  * execution.
    1696             :  */
    1697          10 : bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
    1698             :                            struct delayed_work *dwork, unsigned long delay)
    1699             : {
    1700          10 :         struct work_struct *work = &dwork->work;
    1701          10 :         bool ret = false;
    1702             :         unsigned long flags;
    1703             : 
    1704             :         /* read the comment in __queue_work() */
    1705          10 :         local_irq_save(flags);
    1706             : 
    1707          20 :         if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
    1708          10 :                 __queue_delayed_work(cpu, wq, dwork, delay);
    1709          10 :                 ret = true;
    1710             :         }
    1711             : 
    1712          20 :         local_irq_restore(flags);
    1713          10 :         return ret;
    1714             : }
    1715             : EXPORT_SYMBOL(queue_delayed_work_on);
    1716             : 
    1717             : /**
    1718             :  * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
    1719             :  * @cpu: CPU number to execute work on
    1720             :  * @wq: workqueue to use
    1721             :  * @dwork: work to queue
    1722             :  * @delay: number of jiffies to wait before queueing
    1723             :  *
    1724             :  * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
    1725             :  * modify @dwork's timer so that it expires after @delay.  If @delay is
    1726             :  * zero, @work is guaranteed to be scheduled immediately regardless of its
    1727             :  * current state.
    1728             :  *
    1729             :  * Return: %false if @dwork was idle and queued, %true if @dwork was
    1730             :  * pending and its timer was modified.
    1731             :  *
    1732             :  * This function is safe to call from any context including IRQ handler.
    1733             :  * See try_to_grab_pending() for details.
    1734             :  */
    1735           0 : bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
    1736             :                          struct delayed_work *dwork, unsigned long delay)
    1737             : {
    1738             :         unsigned long flags;
    1739             :         int ret;
    1740             : 
    1741             :         do {
    1742           0 :                 ret = try_to_grab_pending(&dwork->work, true, &flags);
    1743           0 :         } while (unlikely(ret == -EAGAIN));
    1744             : 
    1745           0 :         if (likely(ret >= 0)) {
    1746           0 :                 __queue_delayed_work(cpu, wq, dwork, delay);
    1747           0 :                 local_irq_restore(flags);
    1748             :         }
    1749             : 
    1750             :         /* -ENOENT from try_to_grab_pending() becomes %true */
    1751           0 :         return ret;
    1752             : }
    1753             : EXPORT_SYMBOL_GPL(mod_delayed_work_on);
    1754             : 
    1755           0 : static void rcu_work_rcufn(struct rcu_head *rcu)
    1756             : {
    1757           0 :         struct rcu_work *rwork = container_of(rcu, struct rcu_work, rcu);
    1758             : 
    1759             :         /* read the comment in __queue_work() */
    1760             :         local_irq_disable();
    1761           0 :         __queue_work(WORK_CPU_UNBOUND, rwork->wq, &rwork->work);
    1762             :         local_irq_enable();
    1763           0 : }
    1764             : 
    1765             : /**
    1766             :  * queue_rcu_work - queue work after a RCU grace period
    1767             :  * @wq: workqueue to use
    1768             :  * @rwork: work to queue
    1769             :  *
    1770             :  * Return: %false if @rwork was already pending, %true otherwise.  Note
    1771             :  * that a full RCU grace period is guaranteed only after a %true return.
    1772             :  * While @rwork is guaranteed to be executed after a %false return, the
    1773             :  * execution may happen before a full RCU grace period has passed.
    1774             :  */
    1775           0 : bool queue_rcu_work(struct workqueue_struct *wq, struct rcu_work *rwork)
    1776             : {
    1777           0 :         struct work_struct *work = &rwork->work;
    1778             : 
    1779           0 :         if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
    1780           0 :                 rwork->wq = wq;
    1781           0 :                 call_rcu_hurry(&rwork->rcu, rcu_work_rcufn);
    1782           0 :                 return true;
    1783             :         }
    1784             : 
    1785             :         return false;
    1786             : }
    1787             : EXPORT_SYMBOL(queue_rcu_work);
    1788             : 
    1789             : /**
    1790             :  * worker_enter_idle - enter idle state
    1791             :  * @worker: worker which is entering idle state
    1792             :  *
    1793             :  * @worker is entering idle state.  Update stats and idle timer if
    1794             :  * necessary.
    1795             :  *
    1796             :  * LOCKING:
    1797             :  * raw_spin_lock_irq(pool->lock).
    1798             :  */
    1799          60 : static void worker_enter_idle(struct worker *worker)
    1800             : {
    1801          60 :         struct worker_pool *pool = worker->pool;
    1802             : 
    1803         120 :         if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
    1804         120 :             WARN_ON_ONCE(!list_empty(&worker->entry) &&
    1805             :                          (worker->hentry.next || worker->hentry.pprev)))
    1806             :                 return;
    1807             : 
    1808             :         /* can't use worker_set_flags(), also called from create_worker() */
    1809          60 :         worker->flags |= WORKER_IDLE;
    1810          60 :         pool->nr_idle++;
    1811          60 :         worker->last_active = jiffies;
    1812             : 
    1813             :         /* idle_list is LIFO */
    1814         120 :         list_add(&worker->entry, &pool->idle_list);
    1815             : 
    1816         120 :         if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
    1817           0 :                 mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
    1818             : 
    1819             :         /* Sanity check nr_running. */
    1820          60 :         WARN_ON_ONCE(pool->nr_workers == pool->nr_idle && pool->nr_running);
    1821             : }
    1822             : 
    1823             : /**
    1824             :  * worker_leave_idle - leave idle state
    1825             :  * @worker: worker which is leaving idle state
    1826             :  *
    1827             :  * @worker is leaving idle state.  Update stats.
    1828             :  *
    1829             :  * LOCKING:
    1830             :  * raw_spin_lock_irq(pool->lock).
    1831             :  */
    1832          55 : static void worker_leave_idle(struct worker *worker)
    1833             : {
    1834          55 :         struct worker_pool *pool = worker->pool;
    1835             : 
    1836          55 :         if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
    1837             :                 return;
    1838          55 :         worker_clr_flags(worker, WORKER_IDLE);
    1839          55 :         pool->nr_idle--;
    1840          55 :         list_del_init(&worker->entry);
    1841             : }
    1842             : 
    1843           9 : static struct worker *alloc_worker(int node)
    1844             : {
    1845             :         struct worker *worker;
    1846             : 
    1847           9 :         worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node);
    1848           9 :         if (worker) {
    1849          18 :                 INIT_LIST_HEAD(&worker->entry);
    1850          18 :                 INIT_LIST_HEAD(&worker->scheduled);
    1851          18 :                 INIT_LIST_HEAD(&worker->node);
    1852             :                 /* on creation a worker is in !idle && prep state */
    1853           9 :                 worker->flags = WORKER_PREP;
    1854             :         }
    1855           9 :         return worker;
    1856             : }
    1857             : 
    1858             : /**
    1859             :  * worker_attach_to_pool() - attach a worker to a pool
    1860             :  * @worker: worker to be attached
    1861             :  * @pool: the target pool
    1862             :  *
    1863             :  * Attach @worker to @pool.  Once attached, the %WORKER_UNBOUND flag and
    1864             :  * cpu-binding of @worker are kept coordinated with the pool across
    1865             :  * cpu-[un]hotplugs.
    1866             :  */
    1867           5 : static void worker_attach_to_pool(struct worker *worker,
    1868             :                                    struct worker_pool *pool)
    1869             : {
    1870           5 :         mutex_lock(&wq_pool_attach_mutex);
    1871             : 
    1872             :         /*
    1873             :          * The wq_pool_attach_mutex ensures %POOL_DISASSOCIATED remains
    1874             :          * stable across this function.  See the comments above the flag
    1875             :          * definition for details.
    1876             :          */
    1877           5 :         if (pool->flags & POOL_DISASSOCIATED)
    1878           2 :                 worker->flags |= WORKER_UNBOUND;
    1879             :         else
    1880           3 :                 kthread_set_per_cpu(worker->task, pool->cpu);
    1881             : 
    1882           5 :         if (worker->rescue_wq)
    1883           0 :                 set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask);
    1884             : 
    1885          10 :         list_add_tail(&worker->node, &pool->workers);
    1886           5 :         worker->pool = pool;
    1887             : 
    1888           5 :         mutex_unlock(&wq_pool_attach_mutex);
    1889           5 : }
    1890             : 
    1891             : /**
    1892             :  * worker_detach_from_pool() - detach a worker from its pool
    1893             :  * @worker: worker which is attached to its pool
    1894             :  *
    1895             :  * Undo the attaching which had been done in worker_attach_to_pool().  The
    1896             :  * caller worker shouldn't access to the pool after detached except it has
    1897             :  * other reference to the pool.
    1898             :  */
    1899           0 : static void worker_detach_from_pool(struct worker *worker)
    1900             : {
    1901           0 :         struct worker_pool *pool = worker->pool;
    1902           0 :         struct completion *detach_completion = NULL;
    1903             : 
    1904           0 :         mutex_lock(&wq_pool_attach_mutex);
    1905             : 
    1906           0 :         kthread_set_per_cpu(worker->task, -1);
    1907           0 :         list_del(&worker->node);
    1908           0 :         worker->pool = NULL;
    1909             : 
    1910           0 :         if (list_empty(&pool->workers) && list_empty(&pool->dying_workers))
    1911           0 :                 detach_completion = pool->detach_completion;
    1912           0 :         mutex_unlock(&wq_pool_attach_mutex);
    1913             : 
    1914             :         /* clear leftover flags without pool->lock after it is detached */
    1915           0 :         worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND);
    1916             : 
    1917           0 :         if (detach_completion)
    1918           0 :                 complete(detach_completion);
    1919           0 : }
    1920             : 
    1921             : /**
    1922             :  * create_worker - create a new workqueue worker
    1923             :  * @pool: pool the new worker will belong to
    1924             :  *
    1925             :  * Create and start a new worker which is attached to @pool.
    1926             :  *
    1927             :  * CONTEXT:
    1928             :  * Might sleep.  Does GFP_KERNEL allocations.
    1929             :  *
    1930             :  * Return:
    1931             :  * Pointer to the newly created worker.
    1932             :  */
    1933           5 : static struct worker *create_worker(struct worker_pool *pool)
    1934             : {
    1935             :         struct worker *worker;
    1936             :         int id;
    1937             :         char id_buf[16];
    1938             : 
    1939             :         /* ID is needed to determine kthread name */
    1940          10 :         id = ida_alloc(&pool->worker_ida, GFP_KERNEL);
    1941           5 :         if (id < 0)
    1942             :                 return NULL;
    1943             : 
    1944           5 :         worker = alloc_worker(pool->node);
    1945           5 :         if (!worker)
    1946             :                 goto fail;
    1947             : 
    1948           5 :         worker->id = id;
    1949             : 
    1950           5 :         if (pool->cpu >= 0)
    1951           3 :                 snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
    1952           3 :                          pool->attrs->nice < 0  ? "H" : "");
    1953             :         else
    1954           2 :                 snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);
    1955             : 
    1956           5 :         worker->task = kthread_create_on_node(worker_thread, worker, pool->node,
    1957             :                                               "kworker/%s", id_buf);
    1958          10 :         if (IS_ERR(worker->task))
    1959             :                 goto fail;
    1960             : 
    1961           5 :         set_user_nice(worker->task, pool->attrs->nice);
    1962           5 :         kthread_bind_mask(worker->task, pool->attrs->cpumask);
    1963             : 
    1964             :         /* successful, attach the worker to the pool */
    1965           5 :         worker_attach_to_pool(worker, pool);
    1966             : 
    1967             :         /* start the newly created worker */
    1968           5 :         raw_spin_lock_irq(&pool->lock);
    1969           5 :         worker->pool->nr_workers++;
    1970           5 :         worker_enter_idle(worker);
    1971           5 :         wake_up_process(worker->task);
    1972           5 :         raw_spin_unlock_irq(&pool->lock);
    1973             : 
    1974           5 :         return worker;
    1975             : 
    1976             : fail:
    1977           0 :         ida_free(&pool->worker_ida, id);
    1978           0 :         kfree(worker);
    1979           0 :         return NULL;
    1980             : }
    1981             : 
    1982           0 : static void unbind_worker(struct worker *worker)
    1983             : {
    1984             :         lockdep_assert_held(&wq_pool_attach_mutex);
    1985             : 
    1986           0 :         kthread_set_per_cpu(worker->task, -1);
    1987           0 :         if (cpumask_intersects(wq_unbound_cpumask, cpu_active_mask))
    1988           0 :                 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, wq_unbound_cpumask) < 0);
    1989             :         else
    1990           0 :                 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, cpu_possible_mask) < 0);
    1991           0 : }
    1992             : 
    1993           0 : static void wake_dying_workers(struct list_head *cull_list)
    1994             : {
    1995             :         struct worker *worker, *tmp;
    1996             : 
    1997           0 :         list_for_each_entry_safe(worker, tmp, cull_list, entry) {
    1998           0 :                 list_del_init(&worker->entry);
    1999           0 :                 unbind_worker(worker);
    2000             :                 /*
    2001             :                  * If the worker was somehow already running, then it had to be
    2002             :                  * in pool->idle_list when set_worker_dying() happened or we
    2003             :                  * wouldn't have gotten here.
    2004             :                  *
    2005             :                  * Thus, the worker must either have observed the WORKER_DIE
    2006             :                  * flag, or have set its state to TASK_IDLE. Either way, the
    2007             :                  * below will be observed by the worker and is safe to do
    2008             :                  * outside of pool->lock.
    2009             :                  */
    2010           0 :                 wake_up_process(worker->task);
    2011             :         }
    2012           0 : }
    2013             : 
    2014             : /**
    2015             :  * set_worker_dying - Tag a worker for destruction
    2016             :  * @worker: worker to be destroyed
    2017             :  * @list: transfer worker away from its pool->idle_list and into list
    2018             :  *
    2019             :  * Tag @worker for destruction and adjust @pool stats accordingly.  The worker
    2020             :  * should be idle.
    2021             :  *
    2022             :  * CONTEXT:
    2023             :  * raw_spin_lock_irq(pool->lock).
    2024             :  */
    2025           0 : static void set_worker_dying(struct worker *worker, struct list_head *list)
    2026             : {
    2027           0 :         struct worker_pool *pool = worker->pool;
    2028             : 
    2029             :         lockdep_assert_held(&pool->lock);
    2030             :         lockdep_assert_held(&wq_pool_attach_mutex);
    2031             : 
    2032             :         /* sanity check frenzy */
    2033           0 :         if (WARN_ON(worker->current_work) ||
    2034           0 :             WARN_ON(!list_empty(&worker->scheduled)) ||
    2035           0 :             WARN_ON(!(worker->flags & WORKER_IDLE)))
    2036             :                 return;
    2037             : 
    2038           0 :         pool->nr_workers--;
    2039           0 :         pool->nr_idle--;
    2040             : 
    2041           0 :         worker->flags |= WORKER_DIE;
    2042             : 
    2043           0 :         list_move(&worker->entry, list);
    2044           0 :         list_move(&worker->node, &pool->dying_workers);
    2045             : }
    2046             : 
    2047             : /**
    2048             :  * idle_worker_timeout - check if some idle workers can now be deleted.
    2049             :  * @t: The pool's idle_timer that just expired
    2050             :  *
    2051             :  * The timer is armed in worker_enter_idle(). Note that it isn't disarmed in
    2052             :  * worker_leave_idle(), as a worker flicking between idle and active while its
    2053             :  * pool is at the too_many_workers() tipping point would cause too much timer
    2054             :  * housekeeping overhead. Since IDLE_WORKER_TIMEOUT is long enough, we just let
    2055             :  * it expire and re-evaluate things from there.
    2056             :  */
    2057           0 : static void idle_worker_timeout(struct timer_list *t)
    2058             : {
    2059           0 :         struct worker_pool *pool = from_timer(pool, t, idle_timer);
    2060           0 :         bool do_cull = false;
    2061             : 
    2062           0 :         if (work_pending(&pool->idle_cull_work))
    2063             :                 return;
    2064             : 
    2065           0 :         raw_spin_lock_irq(&pool->lock);
    2066             : 
    2067           0 :         if (too_many_workers(pool)) {
    2068             :                 struct worker *worker;
    2069             :                 unsigned long expires;
    2070             : 
    2071             :                 /* idle_list is kept in LIFO order, check the last one */
    2072           0 :                 worker = list_entry(pool->idle_list.prev, struct worker, entry);
    2073           0 :                 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
    2074           0 :                 do_cull = !time_before(jiffies, expires);
    2075             : 
    2076           0 :                 if (!do_cull)
    2077           0 :                         mod_timer(&pool->idle_timer, expires);
    2078             :         }
    2079           0 :         raw_spin_unlock_irq(&pool->lock);
    2080             : 
    2081           0 :         if (do_cull)
    2082           0 :                 queue_work(system_unbound_wq, &pool->idle_cull_work);
    2083             : }
    2084             : 
    2085             : /**
    2086             :  * idle_cull_fn - cull workers that have been idle for too long.
    2087             :  * @work: the pool's work for handling these idle workers
    2088             :  *
    2089             :  * This goes through a pool's idle workers and gets rid of those that have been
    2090             :  * idle for at least IDLE_WORKER_TIMEOUT seconds.
    2091             :  *
    2092             :  * We don't want to disturb isolated CPUs because of a pcpu kworker being
    2093             :  * culled, so this also resets worker affinity. This requires a sleepable
    2094             :  * context, hence the split between timer callback and work item.
    2095             :  */
    2096           0 : static void idle_cull_fn(struct work_struct *work)
    2097             : {
    2098           0 :         struct worker_pool *pool = container_of(work, struct worker_pool, idle_cull_work);
    2099             :         struct list_head cull_list;
    2100             : 
    2101           0 :         INIT_LIST_HEAD(&cull_list);
    2102             :         /*
    2103             :          * Grabbing wq_pool_attach_mutex here ensures an already-running worker
    2104             :          * cannot proceed beyong worker_detach_from_pool() in its self-destruct
    2105             :          * path. This is required as a previously-preempted worker could run after
    2106             :          * set_worker_dying() has happened but before wake_dying_workers() did.
    2107             :          */
    2108           0 :         mutex_lock(&wq_pool_attach_mutex);
    2109           0 :         raw_spin_lock_irq(&pool->lock);
    2110             : 
    2111           0 :         while (too_many_workers(pool)) {
    2112             :                 struct worker *worker;
    2113             :                 unsigned long expires;
    2114             : 
    2115           0 :                 worker = list_entry(pool->idle_list.prev, struct worker, entry);
    2116           0 :                 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
    2117             : 
    2118           0 :                 if (time_before(jiffies, expires)) {
    2119           0 :                         mod_timer(&pool->idle_timer, expires);
    2120           0 :                         break;
    2121             :                 }
    2122             : 
    2123           0 :                 set_worker_dying(worker, &cull_list);
    2124             :         }
    2125             : 
    2126           0 :         raw_spin_unlock_irq(&pool->lock);
    2127           0 :         wake_dying_workers(&cull_list);
    2128           0 :         mutex_unlock(&wq_pool_attach_mutex);
    2129           0 : }
    2130             : 
    2131           0 : static void send_mayday(struct work_struct *work)
    2132             : {
    2133           0 :         struct pool_workqueue *pwq = get_work_pwq(work);
    2134           0 :         struct workqueue_struct *wq = pwq->wq;
    2135             : 
    2136             :         lockdep_assert_held(&wq_mayday_lock);
    2137             : 
    2138           0 :         if (!wq->rescuer)
    2139             :                 return;
    2140             : 
    2141             :         /* mayday mayday mayday */
    2142           0 :         if (list_empty(&pwq->mayday_node)) {
    2143             :                 /*
    2144             :                  * If @pwq is for an unbound wq, its base ref may be put at
    2145             :                  * any time due to an attribute change.  Pin @pwq until the
    2146             :                  * rescuer is done with it.
    2147             :                  */
    2148           0 :                 get_pwq(pwq);
    2149           0 :                 list_add_tail(&pwq->mayday_node, &wq->maydays);
    2150           0 :                 wake_up_process(wq->rescuer->task);
    2151             :         }
    2152             : }
    2153             : 
    2154           0 : static void pool_mayday_timeout(struct timer_list *t)
    2155             : {
    2156           0 :         struct worker_pool *pool = from_timer(pool, t, mayday_timer);
    2157             :         struct work_struct *work;
    2158             : 
    2159           0 :         raw_spin_lock_irq(&pool->lock);
    2160           0 :         raw_spin_lock(&wq_mayday_lock);             /* for wq->maydays */
    2161             : 
    2162           0 :         if (need_to_create_worker(pool)) {
    2163             :                 /*
    2164             :                  * We've been trying to create a new worker but
    2165             :                  * haven't been successful.  We might be hitting an
    2166             :                  * allocation deadlock.  Send distress signals to
    2167             :                  * rescuers.
    2168             :                  */
    2169           0 :                 list_for_each_entry(work, &pool->worklist, entry)
    2170           0 :                         send_mayday(work);
    2171             :         }
    2172             : 
    2173           0 :         raw_spin_unlock(&wq_mayday_lock);
    2174           0 :         raw_spin_unlock_irq(&pool->lock);
    2175             : 
    2176           0 :         mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
    2177           0 : }
    2178             : 
    2179             : /**
    2180             :  * maybe_create_worker - create a new worker if necessary
    2181             :  * @pool: pool to create a new worker for
    2182             :  *
    2183             :  * Create a new worker for @pool if necessary.  @pool is guaranteed to
    2184             :  * have at least one idle worker on return from this function.  If
    2185             :  * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
    2186             :  * sent to all rescuers with works scheduled on @pool to resolve
    2187             :  * possible allocation deadlock.
    2188             :  *
    2189             :  * On return, need_to_create_worker() is guaranteed to be %false and
    2190             :  * may_start_working() %true.
    2191             :  *
    2192             :  * LOCKING:
    2193             :  * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
    2194             :  * multiple times.  Does GFP_KERNEL allocations.  Called only from
    2195             :  * manager.
    2196             :  */
    2197           2 : static void maybe_create_worker(struct worker_pool *pool)
    2198             : __releases(&pool->lock)
    2199             : __acquires(&pool->lock)
    2200             : {
    2201             : restart:
    2202           2 :         raw_spin_unlock_irq(&pool->lock);
    2203             : 
    2204             :         /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
    2205           2 :         mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
    2206             : 
    2207             :         while (true) {
    2208           2 :                 if (create_worker(pool) || !need_to_create_worker(pool))
    2209             :                         break;
    2210             : 
    2211           0 :                 schedule_timeout_interruptible(CREATE_COOLDOWN);
    2212             : 
    2213           0 :                 if (!need_to_create_worker(pool))
    2214             :                         break;
    2215             :         }
    2216             : 
    2217           4 :         del_timer_sync(&pool->mayday_timer);
    2218           2 :         raw_spin_lock_irq(&pool->lock);
    2219             :         /*
    2220             :          * This is necessary even after a new worker was just successfully
    2221             :          * created as @pool->lock was dropped and the new worker might have
    2222             :          * already become busy.
    2223             :          */
    2224           2 :         if (need_to_create_worker(pool))
    2225             :                 goto restart;
    2226           2 : }
    2227             : 
    2228             : /**
    2229             :  * manage_workers - manage worker pool
    2230             :  * @worker: self
    2231             :  *
    2232             :  * Assume the manager role and manage the worker pool @worker belongs
    2233             :  * to.  At any given time, there can be only zero or one manager per
    2234             :  * pool.  The exclusion is handled automatically by this function.
    2235             :  *
    2236             :  * The caller can safely start processing works on false return.  On
    2237             :  * true return, it's guaranteed that need_to_create_worker() is false
    2238             :  * and may_start_working() is true.
    2239             :  *
    2240             :  * CONTEXT:
    2241             :  * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
    2242             :  * multiple times.  Does GFP_KERNEL allocations.
    2243             :  *
    2244             :  * Return:
    2245             :  * %false if the pool doesn't need management and the caller can safely
    2246             :  * start processing works, %true if management function was performed and
    2247             :  * the conditions that the caller verified before calling the function may
    2248             :  * no longer be true.
    2249             :  */
    2250           2 : static bool manage_workers(struct worker *worker)
    2251             : {
    2252           2 :         struct worker_pool *pool = worker->pool;
    2253             : 
    2254           2 :         if (pool->flags & POOL_MANAGER_ACTIVE)
    2255             :                 return false;
    2256             : 
    2257           2 :         pool->flags |= POOL_MANAGER_ACTIVE;
    2258           2 :         pool->manager = worker;
    2259             : 
    2260           2 :         maybe_create_worker(pool);
    2261             : 
    2262           2 :         pool->manager = NULL;
    2263           2 :         pool->flags &= ~POOL_MANAGER_ACTIVE;
    2264           2 :         rcuwait_wake_up(&manager_wait);
    2265           2 :         return true;
    2266             : }
    2267             : 
    2268             : /**
    2269             :  * process_one_work - process single work
    2270             :  * @worker: self
    2271             :  * @work: work to process
    2272             :  *
    2273             :  * Process @work.  This function contains all the logics necessary to
    2274             :  * process a single work including synchronization against and
    2275             :  * interaction with other workers on the same cpu, queueing and
    2276             :  * flushing.  As long as context requirement is met, any worker can
    2277             :  * call this function to process a work.
    2278             :  *
    2279             :  * CONTEXT:
    2280             :  * raw_spin_lock_irq(pool->lock) which is released and regrabbed.
    2281             :  */
    2282          53 : static void process_one_work(struct worker *worker, struct work_struct *work)
    2283             : __releases(&pool->lock)
    2284             : __acquires(&pool->lock)
    2285             : {
    2286          53 :         struct pool_workqueue *pwq = get_work_pwq(work);
    2287          53 :         struct worker_pool *pool = worker->pool;
    2288          53 :         bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
    2289             :         unsigned long work_data;
    2290             :         struct worker *collision;
    2291             : #ifdef CONFIG_LOCKDEP
    2292             :         /*
    2293             :          * It is permissible to free the struct work_struct from
    2294             :          * inside the function that is called from it, this we need to
    2295             :          * take into account for lockdep too.  To avoid bogus "held
    2296             :          * lock freed" warnings as well as problems when looking into
    2297             :          * work->lockdep_map, make a copy and use that here.
    2298             :          */
    2299             :         struct lockdep_map lockdep_map;
    2300             : 
    2301             :         lockdep_copy_map(&lockdep_map, &work->lockdep_map);
    2302             : #endif
    2303             :         /* ensure we're on the correct CPU */
    2304          53 :         WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
    2305             :                      raw_smp_processor_id() != pool->cpu);
    2306             : 
    2307             :         /*
    2308             :          * A single work shouldn't be executed concurrently by
    2309             :          * multiple workers on a single cpu.  Check whether anyone is
    2310             :          * already processing the work.  If so, defer the work to the
    2311             :          * currently executing one.
    2312             :          */
    2313          53 :         collision = find_worker_executing_work(pool, work);
    2314          53 :         if (unlikely(collision)) {
    2315           0 :                 move_linked_works(work, &collision->scheduled, NULL);
    2316             :                 return;
    2317             :         }
    2318             : 
    2319             :         /* claim and dequeue */
    2320          53 :         debug_work_deactivate(work);
    2321         106 :         hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
    2322          53 :         worker->current_work = work;
    2323          53 :         worker->current_func = work->func;
    2324          53 :         worker->current_pwq = pwq;
    2325          53 :         work_data = *work_data_bits(work);
    2326          53 :         worker->current_color = get_work_color(work_data);
    2327             : 
    2328             :         /*
    2329             :          * Record wq name for cmdline and debug reporting, may get
    2330             :          * overridden through set_worker_desc().
    2331             :          */
    2332          53 :         strscpy(worker->desc, pwq->wq->name, WORKER_DESC_LEN);
    2333             : 
    2334         106 :         list_del_init(&work->entry);
    2335             : 
    2336             :         /*
    2337             :          * CPU intensive works don't participate in concurrency management.
    2338             :          * They're the scheduler's responsibility.  This takes @worker out
    2339             :          * of concurrency management and the next code block will chain
    2340             :          * execution of the pending work items.
    2341             :          */
    2342          53 :         if (unlikely(cpu_intensive))
    2343           0 :                 worker_set_flags(worker, WORKER_CPU_INTENSIVE);
    2344             : 
    2345             :         /*
    2346             :          * Wake up another worker if necessary.  The condition is always
    2347             :          * false for normal per-cpu workers since nr_running would always
    2348             :          * be >= 1 at this point.  This is used to chain execution of the
    2349             :          * pending work items for WORKER_NOT_RUNNING workers such as the
    2350             :          * UNBOUND and CPU_INTENSIVE ones.
    2351             :          */
    2352          53 :         if (need_more_worker(pool))
    2353             :                 wake_up_worker(pool);
    2354             : 
    2355             :         /*
    2356             :          * Record the last pool and clear PENDING which should be the last
    2357             :          * update to @work.  Also, do this inside @pool->lock so that
    2358             :          * PENDING and queued state changes happen together while IRQ is
    2359             :          * disabled.
    2360             :          */
    2361         106 :         set_work_pool_and_clear_pending(work, pool->id);
    2362             : 
    2363          53 :         raw_spin_unlock_irq(&pool->lock);
    2364             : 
    2365             :         lock_map_acquire(&pwq->wq->lockdep_map);
    2366             :         lock_map_acquire(&lockdep_map);
    2367             :         /*
    2368             :          * Strictly speaking we should mark the invariant state without holding
    2369             :          * any locks, that is, before these two lock_map_acquire()'s.
    2370             :          *
    2371             :          * However, that would result in:
    2372             :          *
    2373             :          *   A(W1)
    2374             :          *   WFC(C)
    2375             :          *              A(W1)
    2376             :          *              C(C)
    2377             :          *
    2378             :          * Which would create W1->C->W1 dependencies, even though there is no
    2379             :          * actual deadlock possible. There are two solutions, using a
    2380             :          * read-recursive acquire on the work(queue) 'locks', but this will then
    2381             :          * hit the lockdep limitation on recursive locks, or simply discard
    2382             :          * these locks.
    2383             :          *
    2384             :          * AFAICT there is no possible deadlock scenario between the
    2385             :          * flush_work() and complete() primitives (except for single-threaded
    2386             :          * workqueues), so hiding them isn't a problem.
    2387             :          */
    2388          53 :         lockdep_invariant_state(true);
    2389          53 :         trace_workqueue_execute_start(work);
    2390          53 :         worker->current_func(work);
    2391             :         /*
    2392             :          * While we must be careful to not use "work" after this, the trace
    2393             :          * point will only record its address.
    2394             :          */
    2395          53 :         trace_workqueue_execute_end(work, worker->current_func);
    2396             :         lock_map_release(&lockdep_map);
    2397             :         lock_map_release(&pwq->wq->lockdep_map);
    2398             : 
    2399          53 :         if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
    2400           0 :                 pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
    2401             :                        "     last function: %ps\n",
    2402             :                        current->comm, preempt_count(), task_pid_nr(current),
    2403             :                        worker->current_func);
    2404           0 :                 debug_show_held_locks(current);
    2405           0 :                 dump_stack();
    2406             :         }
    2407             : 
    2408             :         /*
    2409             :          * The following prevents a kworker from hogging CPU on !PREEMPTION
    2410             :          * kernels, where a requeueing work item waiting for something to
    2411             :          * happen could deadlock with stop_machine as such work item could
    2412             :          * indefinitely requeue itself while all other CPUs are trapped in
    2413             :          * stop_machine. At the same time, report a quiescent RCU state so
    2414             :          * the same condition doesn't freeze RCU.
    2415             :          */
    2416          53 :         cond_resched();
    2417             : 
    2418          53 :         raw_spin_lock_irq(&pool->lock);
    2419             : 
    2420             :         /* clear cpu intensive status */
    2421          53 :         if (unlikely(cpu_intensive))
    2422           0 :                 worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
    2423             : 
    2424             :         /* tag the worker for identification in schedule() */
    2425          53 :         worker->last_func = worker->current_func;
    2426             : 
    2427             :         /* we're done with it, release */
    2428         106 :         hash_del(&worker->hentry);
    2429          53 :         worker->current_work = NULL;
    2430          53 :         worker->current_func = NULL;
    2431          53 :         worker->current_pwq = NULL;
    2432          53 :         worker->current_color = INT_MAX;
    2433          53 :         pwq_dec_nr_in_flight(pwq, work_data);
    2434             : }
    2435             : 
    2436             : /**
    2437             :  * process_scheduled_works - process scheduled works
    2438             :  * @worker: self
    2439             :  *
    2440             :  * Process all scheduled works.  Please note that the scheduled list
    2441             :  * may change while processing a work, so this function repeatedly
    2442             :  * fetches a work from the top and executes it.
    2443             :  *
    2444             :  * CONTEXT:
    2445             :  * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
    2446             :  * multiple times.
    2447             :  */
    2448             : static void process_scheduled_works(struct worker *worker)
    2449             : {
    2450          12 :         while (!list_empty(&worker->scheduled)) {
    2451           4 :                 struct work_struct *work = list_first_entry(&worker->scheduled,
    2452             :                                                 struct work_struct, entry);
    2453           4 :                 process_one_work(worker, work);
    2454             :         }
    2455             : }
    2456             : 
    2457           9 : static void set_pf_worker(bool val)
    2458             : {
    2459           9 :         mutex_lock(&wq_pool_attach_mutex);
    2460           9 :         if (val)
    2461           9 :                 current->flags |= PF_WQ_WORKER;
    2462             :         else
    2463           0 :                 current->flags &= ~PF_WQ_WORKER;
    2464           9 :         mutex_unlock(&wq_pool_attach_mutex);
    2465           9 : }
    2466             : 
    2467             : /**
    2468             :  * worker_thread - the worker thread function
    2469             :  * @__worker: self
    2470             :  *
    2471             :  * The worker thread function.  All workers belong to a worker_pool -
    2472             :  * either a per-cpu one or dynamic unbound one.  These workers process all
    2473             :  * work items regardless of their specific target workqueue.  The only
    2474             :  * exception is work items which belong to workqueues with a rescuer which
    2475             :  * will be explained in rescuer_thread().
    2476             :  *
    2477             :  * Return: 0
    2478             :  */
    2479           5 : static int worker_thread(void *__worker)
    2480             : {
    2481           5 :         struct worker *worker = __worker;
    2482           5 :         struct worker_pool *pool = worker->pool;
    2483             : 
    2484             :         /* tell the scheduler that this is a workqueue worker */
    2485           5 :         set_pf_worker(true);
    2486             : woke_up:
    2487          55 :         raw_spin_lock_irq(&pool->lock);
    2488             : 
    2489             :         /* am I supposed to die? */
    2490          55 :         if (unlikely(worker->flags & WORKER_DIE)) {
    2491           0 :                 raw_spin_unlock_irq(&pool->lock);
    2492           0 :                 set_pf_worker(false);
    2493             : 
    2494           0 :                 set_task_comm(worker->task, "kworker/dying");
    2495           0 :                 ida_free(&pool->worker_ida, worker->id);
    2496           0 :                 worker_detach_from_pool(worker);
    2497           0 :                 WARN_ON_ONCE(!list_empty(&worker->entry));
    2498           0 :                 kfree(worker);
    2499           0 :                 return 0;
    2500             :         }
    2501             : 
    2502          55 :         worker_leave_idle(worker);
    2503             : recheck:
    2504             :         /* no more worker necessary? */
    2505          57 :         if (!need_more_worker(pool))
    2506             :                 goto sleep;
    2507             : 
    2508             :         /* do we need to manage? */
    2509          52 :         if (unlikely(!may_start_working(pool)) && manage_workers(worker))
    2510             :                 goto recheck;
    2511             : 
    2512             :         /*
    2513             :          * ->scheduled list can only be filled while a worker is
    2514             :          * preparing to process a work or actually processing it.
    2515             :          * Make sure nobody diddled with it while I was sleeping.
    2516             :          */
    2517         100 :         WARN_ON_ONCE(!list_empty(&worker->scheduled));
    2518             : 
    2519             :         /*
    2520             :          * Finish PREP stage.  We're guaranteed to have at least one idle
    2521             :          * worker or that someone else has already assumed the manager
    2522             :          * role.  This is where @worker starts participating in concurrency
    2523             :          * management if applicable and concurrency management is restored
    2524             :          * after being rebound.  See rebind_workers() for details.
    2525             :          */
    2526          50 :         worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
    2527             : 
    2528             :         do {
    2529          51 :                 struct work_struct *work =
    2530          51 :                         list_first_entry(&pool->worklist,
    2531             :                                          struct work_struct, entry);
    2532             : 
    2533          51 :                 pool->watchdog_ts = jiffies;
    2534             : 
    2535          51 :                 if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
    2536             :                         /* optimization path, not strictly necessary */
    2537          49 :                         process_one_work(worker, work);
    2538          98 :                         if (unlikely(!list_empty(&worker->scheduled)))
    2539             :                                 process_scheduled_works(worker);
    2540             :                 } else {
    2541           2 :                         move_linked_works(work, &worker->scheduled, NULL);
    2542             :                         process_scheduled_works(worker);
    2543             :                 }
    2544          51 :         } while (keep_working(pool));
    2545             : 
    2546          50 :         worker_set_flags(worker, WORKER_PREP);
    2547             : sleep:
    2548             :         /*
    2549             :          * pool->lock is held and there's no work to process and no need to
    2550             :          * manage, sleep.  Workers are woken up only while holding
    2551             :          * pool->lock or from local cpu, so setting the current state
    2552             :          * before releasing pool->lock is enough to prevent losing any
    2553             :          * event.
    2554             :          */
    2555          55 :         worker_enter_idle(worker);
    2556          55 :         __set_current_state(TASK_IDLE);
    2557          55 :         raw_spin_unlock_irq(&pool->lock);
    2558          55 :         schedule();
    2559          50 :         goto woke_up;
    2560             : }
    2561             : 
    2562             : /**
    2563             :  * rescuer_thread - the rescuer thread function
    2564             :  * @__rescuer: self
    2565             :  *
    2566             :  * Workqueue rescuer thread function.  There's one rescuer for each
    2567             :  * workqueue which has WQ_MEM_RECLAIM set.
    2568             :  *
    2569             :  * Regular work processing on a pool may block trying to create a new
    2570             :  * worker which uses GFP_KERNEL allocation which has slight chance of
    2571             :  * developing into deadlock if some works currently on the same queue
    2572             :  * need to be processed to satisfy the GFP_KERNEL allocation.  This is
    2573             :  * the problem rescuer solves.
    2574             :  *
    2575             :  * When such condition is possible, the pool summons rescuers of all
    2576             :  * workqueues which have works queued on the pool and let them process
    2577             :  * those works so that forward progress can be guaranteed.
    2578             :  *
    2579             :  * This should happen rarely.
    2580             :  *
    2581             :  * Return: 0
    2582             :  */
    2583           4 : static int rescuer_thread(void *__rescuer)
    2584             : {
    2585           4 :         struct worker *rescuer = __rescuer;
    2586           4 :         struct workqueue_struct *wq = rescuer->rescue_wq;
    2587           4 :         struct list_head *scheduled = &rescuer->scheduled;
    2588             :         bool should_stop;
    2589             : 
    2590           4 :         set_user_nice(current, RESCUER_NICE_LEVEL);
    2591             : 
    2592             :         /*
    2593             :          * Mark rescuer as worker too.  As WORKER_PREP is never cleared, it
    2594             :          * doesn't participate in concurrency management.
    2595             :          */
    2596           4 :         set_pf_worker(true);
    2597             : repeat:
    2598           4 :         set_current_state(TASK_IDLE);
    2599             : 
    2600             :         /*
    2601             :          * By the time the rescuer is requested to stop, the workqueue
    2602             :          * shouldn't have any work pending, but @wq->maydays may still have
    2603             :          * pwq(s) queued.  This can happen by non-rescuer workers consuming
    2604             :          * all the work items before the rescuer got to them.  Go through
    2605             :          * @wq->maydays processing before acting on should_stop so that the
    2606             :          * list is always empty on exit.
    2607             :          */
    2608           4 :         should_stop = kthread_should_stop();
    2609             : 
    2610             :         /* see whether any pwq is asking for help */
    2611           4 :         raw_spin_lock_irq(&wq_mayday_lock);
    2612             : 
    2613          12 :         while (!list_empty(&wq->maydays)) {
    2614           0 :                 struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
    2615             :                                         struct pool_workqueue, mayday_node);
    2616           0 :                 struct worker_pool *pool = pwq->pool;
    2617             :                 struct work_struct *work, *n;
    2618           0 :                 bool first = true;
    2619             : 
    2620           0 :                 __set_current_state(TASK_RUNNING);
    2621           0 :                 list_del_init(&pwq->mayday_node);
    2622             : 
    2623           0 :                 raw_spin_unlock_irq(&wq_mayday_lock);
    2624             : 
    2625           0 :                 worker_attach_to_pool(rescuer, pool);
    2626             : 
    2627           0 :                 raw_spin_lock_irq(&pool->lock);
    2628             : 
    2629             :                 /*
    2630             :                  * Slurp in all works issued via this workqueue and
    2631             :                  * process'em.
    2632             :                  */
    2633           0 :                 WARN_ON_ONCE(!list_empty(scheduled));
    2634           0 :                 list_for_each_entry_safe(work, n, &pool->worklist, entry) {
    2635           0 :                         if (get_work_pwq(work) == pwq) {
    2636           0 :                                 if (first)
    2637           0 :                                         pool->watchdog_ts = jiffies;
    2638             :                                 move_linked_works(work, scheduled, &n);
    2639             :                         }
    2640           0 :                         first = false;
    2641             :                 }
    2642             : 
    2643           0 :                 if (!list_empty(scheduled)) {
    2644           0 :                         process_scheduled_works(rescuer);
    2645             : 
    2646             :                         /*
    2647             :                          * The above execution of rescued work items could
    2648             :                          * have created more to rescue through
    2649             :                          * pwq_activate_first_inactive() or chained
    2650             :                          * queueing.  Let's put @pwq back on mayday list so
    2651             :                          * that such back-to-back work items, which may be
    2652             :                          * being used to relieve memory pressure, don't
    2653             :                          * incur MAYDAY_INTERVAL delay inbetween.
    2654             :                          */
    2655           0 :                         if (pwq->nr_active && need_to_create_worker(pool)) {
    2656           0 :                                 raw_spin_lock(&wq_mayday_lock);
    2657             :                                 /*
    2658             :                                  * Queue iff we aren't racing destruction
    2659             :                                  * and somebody else hasn't queued it already.
    2660             :                                  */
    2661           0 :                                 if (wq->rescuer && list_empty(&pwq->mayday_node)) {
    2662           0 :                                         get_pwq(pwq);
    2663           0 :                                         list_add_tail(&pwq->mayday_node, &wq->maydays);
    2664             :                                 }
    2665           0 :                                 raw_spin_unlock(&wq_mayday_lock);
    2666             :                         }
    2667             :                 }
    2668             : 
    2669             :                 /*
    2670             :                  * Put the reference grabbed by send_mayday().  @pool won't
    2671             :                  * go away while we're still attached to it.
    2672             :                  */
    2673           0 :                 put_pwq(pwq);
    2674             : 
    2675             :                 /*
    2676             :                  * Leave this pool.  If need_more_worker() is %true, notify a
    2677             :                  * regular worker; otherwise, we end up with 0 concurrency
    2678             :                  * and stalling the execution.
    2679             :                  */
    2680           0 :                 if (need_more_worker(pool))
    2681             :                         wake_up_worker(pool);
    2682             : 
    2683           0 :                 raw_spin_unlock_irq(&pool->lock);
    2684             : 
    2685           0 :                 worker_detach_from_pool(rescuer);
    2686             : 
    2687           0 :                 raw_spin_lock_irq(&wq_mayday_lock);
    2688             :         }
    2689             : 
    2690           4 :         raw_spin_unlock_irq(&wq_mayday_lock);
    2691             : 
    2692           4 :         if (should_stop) {
    2693           0 :                 __set_current_state(TASK_RUNNING);
    2694           0 :                 set_pf_worker(false);
    2695           0 :                 return 0;
    2696             :         }
    2697             : 
    2698             :         /* rescuers should never participate in concurrency management */
    2699           4 :         WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
    2700           4 :         schedule();
    2701           0 :         goto repeat;
    2702             : }
    2703             : 
    2704             : /**
    2705             :  * check_flush_dependency - check for flush dependency sanity
    2706             :  * @target_wq: workqueue being flushed
    2707             :  * @target_work: work item being flushed (NULL for workqueue flushes)
    2708             :  *
    2709             :  * %current is trying to flush the whole @target_wq or @target_work on it.
    2710             :  * If @target_wq doesn't have %WQ_MEM_RECLAIM, verify that %current is not
    2711             :  * reclaiming memory or running on a workqueue which doesn't have
    2712             :  * %WQ_MEM_RECLAIM as that can break forward-progress guarantee leading to
    2713             :  * a deadlock.
    2714             :  */
    2715           2 : static void check_flush_dependency(struct workqueue_struct *target_wq,
    2716             :                                    struct work_struct *target_work)
    2717             : {
    2718           2 :         work_func_t target_func = target_work ? target_work->func : NULL;
    2719             :         struct worker *worker;
    2720             : 
    2721           2 :         if (target_wq->flags & WQ_MEM_RECLAIM)
    2722             :                 return;
    2723             : 
    2724           2 :         worker = current_wq_worker();
    2725             : 
    2726           2 :         WARN_ONCE(current->flags & PF_MEMALLOC,
    2727             :                   "workqueue: PF_MEMALLOC task %d(%s) is flushing !WQ_MEM_RECLAIM %s:%ps",
    2728             :                   current->pid, current->comm, target_wq->name, target_func);
    2729           2 :         WARN_ONCE(worker && ((worker->current_pwq->wq->flags &
    2730             :                               (WQ_MEM_RECLAIM | __WQ_LEGACY)) == WQ_MEM_RECLAIM),
    2731             :                   "workqueue: WQ_MEM_RECLAIM %s:%ps is flushing !WQ_MEM_RECLAIM %s:%ps",
    2732             :                   worker->current_pwq->wq->name, worker->current_func,
    2733             :                   target_wq->name, target_func);
    2734             : }
    2735             : 
    2736             : struct wq_barrier {
    2737             :         struct work_struct      work;
    2738             :         struct completion       done;
    2739             :         struct task_struct      *task;  /* purely informational */
    2740             : };
    2741             : 
    2742           2 : static void wq_barrier_func(struct work_struct *work)
    2743             : {
    2744           2 :         struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
    2745           2 :         complete(&barr->done);
    2746           2 : }
    2747             : 
    2748             : /**
    2749             :  * insert_wq_barrier - insert a barrier work
    2750             :  * @pwq: pwq to insert barrier into
    2751             :  * @barr: wq_barrier to insert
    2752             :  * @target: target work to attach @barr to
    2753             :  * @worker: worker currently executing @target, NULL if @target is not executing
    2754             :  *
    2755             :  * @barr is linked to @target such that @barr is completed only after
    2756             :  * @target finishes execution.  Please note that the ordering
    2757             :  * guarantee is observed only with respect to @target and on the local
    2758             :  * cpu.
    2759             :  *
    2760             :  * Currently, a queued barrier can't be canceled.  This is because
    2761             :  * try_to_grab_pending() can't determine whether the work to be
    2762             :  * grabbed is at the head of the queue and thus can't clear LINKED
    2763             :  * flag of the previous work while there must be a valid next work
    2764             :  * after a work with LINKED flag set.
    2765             :  *
    2766             :  * Note that when @worker is non-NULL, @target may be modified
    2767             :  * underneath us, so we can't reliably determine pwq from @target.
    2768             :  *
    2769             :  * CONTEXT:
    2770             :  * raw_spin_lock_irq(pool->lock).
    2771             :  */
    2772           2 : static void insert_wq_barrier(struct pool_workqueue *pwq,
    2773             :                               struct wq_barrier *barr,
    2774             :                               struct work_struct *target, struct worker *worker)
    2775             : {
    2776           2 :         unsigned int work_flags = 0;
    2777             :         unsigned int work_color;
    2778             :         struct list_head *head;
    2779             : 
    2780             :         /*
    2781             :          * debugobject calls are safe here even with pool->lock locked
    2782             :          * as we know for sure that this will not trigger any of the
    2783             :          * checks and call back into the fixup functions where we
    2784             :          * might deadlock.
    2785             :          */
    2786           4 :         INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
    2787           2 :         __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
    2788             : 
    2789           4 :         init_completion_map(&barr->done, &target->lockdep_map);
    2790             : 
    2791           2 :         barr->task = current;
    2792             : 
    2793             :         /* The barrier work item does not participate in pwq->nr_active. */
    2794           2 :         work_flags |= WORK_STRUCT_INACTIVE;
    2795             : 
    2796             :         /*
    2797             :          * If @target is currently being executed, schedule the
    2798             :          * barrier to the worker; otherwise, put it after @target.
    2799             :          */
    2800           2 :         if (worker) {
    2801           0 :                 head = worker->scheduled.next;
    2802           0 :                 work_color = worker->current_color;
    2803             :         } else {
    2804           2 :                 unsigned long *bits = work_data_bits(target);
    2805             : 
    2806           2 :                 head = target->entry.next;
    2807             :                 /* there can already be other linked works, inherit and set */
    2808           2 :                 work_flags |= *bits & WORK_STRUCT_LINKED;
    2809           4 :                 work_color = get_work_color(*bits);
    2810           2 :                 __set_bit(WORK_STRUCT_LINKED_BIT, bits);
    2811             :         }
    2812             : 
    2813           2 :         pwq->nr_in_flight[work_color]++;
    2814           4 :         work_flags |= work_color_to_flags(work_color);
    2815             : 
    2816           2 :         debug_work_activate(&barr->work);
    2817           2 :         insert_work(pwq, &barr->work, head, work_flags);
    2818           2 : }
    2819             : 
    2820             : /**
    2821             :  * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
    2822             :  * @wq: workqueue being flushed
    2823             :  * @flush_color: new flush color, < 0 for no-op
    2824             :  * @work_color: new work color, < 0 for no-op
    2825             :  *
    2826             :  * Prepare pwqs for workqueue flushing.
    2827             :  *
    2828             :  * If @flush_color is non-negative, flush_color on all pwqs should be
    2829             :  * -1.  If no pwq has in-flight commands at the specified color, all
    2830             :  * pwq->flush_color's stay at -1 and %false is returned.  If any pwq
    2831             :  * has in flight commands, its pwq->flush_color is set to
    2832             :  * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
    2833             :  * wakeup logic is armed and %true is returned.
    2834             :  *
    2835             :  * The caller should have initialized @wq->first_flusher prior to
    2836             :  * calling this function with non-negative @flush_color.  If
    2837             :  * @flush_color is negative, no flush color update is done and %false
    2838             :  * is returned.
    2839             :  *
    2840             :  * If @work_color is non-negative, all pwqs should have the same
    2841             :  * work_color which is previous to @work_color and all will be
    2842             :  * advanced to @work_color.
    2843             :  *
    2844             :  * CONTEXT:
    2845             :  * mutex_lock(wq->mutex).
    2846             :  *
    2847             :  * Return:
    2848             :  * %true if @flush_color >= 0 and there's something to flush.  %false
    2849             :  * otherwise.
    2850             :  */
    2851           0 : static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
    2852             :                                       int flush_color, int work_color)
    2853             : {
    2854           0 :         bool wait = false;
    2855             :         struct pool_workqueue *pwq;
    2856             : 
    2857           0 :         if (flush_color >= 0) {
    2858           0 :                 WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
    2859           0 :                 atomic_set(&wq->nr_pwqs_to_flush, 1);
    2860             :         }
    2861             : 
    2862           0 :         for_each_pwq(pwq, wq) {
    2863           0 :                 struct worker_pool *pool = pwq->pool;
    2864             : 
    2865           0 :                 raw_spin_lock_irq(&pool->lock);
    2866             : 
    2867           0 :                 if (flush_color >= 0) {
    2868           0 :                         WARN_ON_ONCE(pwq->flush_color != -1);
    2869             : 
    2870           0 :                         if (pwq->nr_in_flight[flush_color]) {
    2871           0 :                                 pwq->flush_color = flush_color;
    2872           0 :                                 atomic_inc(&wq->nr_pwqs_to_flush);
    2873           0 :                                 wait = true;
    2874             :                         }
    2875             :                 }
    2876             : 
    2877           0 :                 if (work_color >= 0) {
    2878           0 :                         WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
    2879           0 :                         pwq->work_color = work_color;
    2880             :                 }
    2881             : 
    2882           0 :                 raw_spin_unlock_irq(&pool->lock);
    2883             :         }
    2884             : 
    2885           0 :         if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
    2886           0 :                 complete(&wq->first_flusher->done);
    2887             : 
    2888           0 :         return wait;
    2889             : }
    2890             : 
    2891             : /**
    2892             :  * __flush_workqueue - ensure that any scheduled work has run to completion.
    2893             :  * @wq: workqueue to flush
    2894             :  *
    2895             :  * This function sleeps until all work items which were queued on entry
    2896             :  * have finished execution, but it is not livelocked by new incoming ones.
    2897             :  */
    2898           0 : void __flush_workqueue(struct workqueue_struct *wq)
    2899             : {
    2900           0 :         struct wq_flusher this_flusher = {
    2901             :                 .list = LIST_HEAD_INIT(this_flusher.list),
    2902             :                 .flush_color = -1,
    2903           0 :                 .done = COMPLETION_INITIALIZER_ONSTACK_MAP(this_flusher.done, wq->lockdep_map),
    2904             :         };
    2905             :         int next_color;
    2906             : 
    2907           0 :         if (WARN_ON(!wq_online))
    2908           0 :                 return;
    2909             : 
    2910             :         lock_map_acquire(&wq->lockdep_map);
    2911             :         lock_map_release(&wq->lockdep_map);
    2912             : 
    2913           0 :         mutex_lock(&wq->mutex);
    2914             : 
    2915             :         /*
    2916             :          * Start-to-wait phase
    2917             :          */
    2918           0 :         next_color = work_next_color(wq->work_color);
    2919             : 
    2920           0 :         if (next_color != wq->flush_color) {
    2921             :                 /*
    2922             :                  * Color space is not full.  The current work_color
    2923             :                  * becomes our flush_color and work_color is advanced
    2924             :                  * by one.
    2925             :                  */
    2926           0 :                 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
    2927           0 :                 this_flusher.flush_color = wq->work_color;
    2928           0 :                 wq->work_color = next_color;
    2929             : 
    2930           0 :                 if (!wq->first_flusher) {
    2931             :                         /* no flush in progress, become the first flusher */
    2932           0 :                         WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
    2933             : 
    2934           0 :                         wq->first_flusher = &this_flusher;
    2935             : 
    2936           0 :                         if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
    2937             :                                                        wq->work_color)) {
    2938             :                                 /* nothing to flush, done */
    2939           0 :                                 wq->flush_color = next_color;
    2940           0 :                                 wq->first_flusher = NULL;
    2941           0 :                                 goto out_unlock;
    2942             :                         }
    2943             :                 } else {
    2944             :                         /* wait in queue */
    2945           0 :                         WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
    2946           0 :                         list_add_tail(&this_flusher.list, &wq->flusher_queue);
    2947           0 :                         flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
    2948             :                 }
    2949             :         } else {
    2950             :                 /*
    2951             :                  * Oops, color space is full, wait on overflow queue.
    2952             :                  * The next flush completion will assign us
    2953             :                  * flush_color and transfer to flusher_queue.
    2954             :                  */
    2955           0 :                 list_add_tail(&this_flusher.list, &wq->flusher_overflow);
    2956             :         }
    2957             : 
    2958           0 :         check_flush_dependency(wq, NULL);
    2959             : 
    2960           0 :         mutex_unlock(&wq->mutex);
    2961             : 
    2962           0 :         wait_for_completion(&this_flusher.done);
    2963             : 
    2964             :         /*
    2965             :          * Wake-up-and-cascade phase
    2966             :          *
    2967             :          * First flushers are responsible for cascading flushes and
    2968             :          * handling overflow.  Non-first flushers can simply return.
    2969             :          */
    2970           0 :         if (READ_ONCE(wq->first_flusher) != &this_flusher)
    2971             :                 return;
    2972             : 
    2973           0 :         mutex_lock(&wq->mutex);
    2974             : 
    2975             :         /* we might have raced, check again with mutex held */
    2976           0 :         if (wq->first_flusher != &this_flusher)
    2977             :                 goto out_unlock;
    2978             : 
    2979           0 :         WRITE_ONCE(wq->first_flusher, NULL);
    2980             : 
    2981           0 :         WARN_ON_ONCE(!list_empty(&this_flusher.list));
    2982           0 :         WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
    2983             : 
    2984           0 :         while (true) {
    2985             :                 struct wq_flusher *next, *tmp;
    2986             : 
    2987             :                 /* complete all the flushers sharing the current flush color */
    2988           0 :                 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
    2989           0 :                         if (next->flush_color != wq->flush_color)
    2990             :                                 break;
    2991           0 :                         list_del_init(&next->list);
    2992           0 :                         complete(&next->done);
    2993             :                 }
    2994             : 
    2995           0 :                 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
    2996             :                              wq->flush_color != work_next_color(wq->work_color));
    2997             : 
    2998             :                 /* this flush_color is finished, advance by one */
    2999           0 :                 wq->flush_color = work_next_color(wq->flush_color);
    3000             : 
    3001             :                 /* one color has been freed, handle overflow queue */
    3002           0 :                 if (!list_empty(&wq->flusher_overflow)) {
    3003             :                         /*
    3004             :                          * Assign the same color to all overflowed
    3005             :                          * flushers, advance work_color and append to
    3006             :                          * flusher_queue.  This is the start-to-wait
    3007             :                          * phase for these overflowed flushers.
    3008             :                          */
    3009           0 :                         list_for_each_entry(tmp, &wq->flusher_overflow, list)
    3010           0 :                                 tmp->flush_color = wq->work_color;
    3011             : 
    3012           0 :                         wq->work_color = work_next_color(wq->work_color);
    3013             : 
    3014           0 :                         list_splice_tail_init(&wq->flusher_overflow,
    3015             :                                               &wq->flusher_queue);
    3016           0 :                         flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
    3017             :                 }
    3018             : 
    3019           0 :                 if (list_empty(&wq->flusher_queue)) {
    3020           0 :                         WARN_ON_ONCE(wq->flush_color != wq->work_color);
    3021             :                         break;
    3022             :                 }
    3023             : 
    3024             :                 /*
    3025             :                  * Need to flush more colors.  Make the next flusher
    3026             :                  * the new first flusher and arm pwqs.
    3027             :                  */
    3028           0 :                 WARN_ON_ONCE(wq->flush_color == wq->work_color);
    3029           0 :                 WARN_ON_ONCE(wq->flush_color != next->flush_color);
    3030             : 
    3031           0 :                 list_del_init(&next->list);
    3032           0 :                 wq->first_flusher = next;
    3033             : 
    3034           0 :                 if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
    3035             :                         break;
    3036             : 
    3037             :                 /*
    3038             :                  * Meh... this color is already done, clear first
    3039             :                  * flusher and repeat cascading.
    3040             :                  */
    3041           0 :                 wq->first_flusher = NULL;
    3042             :         }
    3043             : 
    3044             : out_unlock:
    3045           0 :         mutex_unlock(&wq->mutex);
    3046             : }
    3047             : EXPORT_SYMBOL(__flush_workqueue);
    3048             : 
    3049             : /**
    3050             :  * drain_workqueue - drain a workqueue
    3051             :  * @wq: workqueue to drain
    3052             :  *
    3053             :  * Wait until the workqueue becomes empty.  While draining is in progress,
    3054             :  * only chain queueing is allowed.  IOW, only currently pending or running
    3055             :  * work items on @wq can queue further work items on it.  @wq is flushed
    3056             :  * repeatedly until it becomes empty.  The number of flushing is determined
    3057             :  * by the depth of chaining and should be relatively short.  Whine if it
    3058             :  * takes too long.
    3059             :  */
    3060           0 : void drain_workqueue(struct workqueue_struct *wq)
    3061             : {
    3062           0 :         unsigned int flush_cnt = 0;
    3063             :         struct pool_workqueue *pwq;
    3064             : 
    3065             :         /*
    3066             :          * __queue_work() needs to test whether there are drainers, is much
    3067             :          * hotter than drain_workqueue() and already looks at @wq->flags.
    3068             :          * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
    3069             :          */
    3070           0 :         mutex_lock(&wq->mutex);
    3071           0 :         if (!wq->nr_drainers++)
    3072           0 :                 wq->flags |= __WQ_DRAINING;
    3073           0 :         mutex_unlock(&wq->mutex);
    3074             : reflush:
    3075           0 :         __flush_workqueue(wq);
    3076             : 
    3077           0 :         mutex_lock(&wq->mutex);
    3078             : 
    3079           0 :         for_each_pwq(pwq, wq) {
    3080             :                 bool drained;
    3081             : 
    3082           0 :                 raw_spin_lock_irq(&pwq->pool->lock);
    3083           0 :                 drained = !pwq->nr_active && list_empty(&pwq->inactive_works);
    3084           0 :                 raw_spin_unlock_irq(&pwq->pool->lock);
    3085             : 
    3086           0 :                 if (drained)
    3087           0 :                         continue;
    3088             : 
    3089           0 :                 if (++flush_cnt == 10 ||
    3090           0 :                     (flush_cnt % 100 == 0 && flush_cnt <= 1000))
    3091           0 :                         pr_warn("workqueue %s: %s() isn't complete after %u tries\n",
    3092             :                                 wq->name, __func__, flush_cnt);
    3093             : 
    3094           0 :                 mutex_unlock(&wq->mutex);
    3095           0 :                 goto reflush;
    3096             :         }
    3097             : 
    3098           0 :         if (!--wq->nr_drainers)
    3099           0 :                 wq->flags &= ~__WQ_DRAINING;
    3100           0 :         mutex_unlock(&wq->mutex);
    3101           0 : }
    3102             : EXPORT_SYMBOL_GPL(drain_workqueue);
    3103             : 
    3104          21 : static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr,
    3105             :                              bool from_cancel)
    3106             : {
    3107          21 :         struct worker *worker = NULL;
    3108             :         struct worker_pool *pool;
    3109             :         struct pool_workqueue *pwq;
    3110             : 
    3111             :         might_sleep();
    3112             : 
    3113             :         rcu_read_lock();
    3114          21 :         pool = get_work_pool(work);
    3115          21 :         if (!pool) {
    3116             :                 rcu_read_unlock();
    3117          17 :                 return false;
    3118             :         }
    3119             : 
    3120           4 :         raw_spin_lock_irq(&pool->lock);
    3121             :         /* see the comment in try_to_grab_pending() with the same code */
    3122           4 :         pwq = get_work_pwq(work);
    3123           4 :         if (pwq) {
    3124           2 :                 if (unlikely(pwq->pool != pool))
    3125             :                         goto already_gone;
    3126             :         } else {
    3127           2 :                 worker = find_worker_executing_work(pool, work);
    3128           2 :                 if (!worker)
    3129             :                         goto already_gone;
    3130           0 :                 pwq = worker->current_pwq;
    3131             :         }
    3132             : 
    3133           2 :         check_flush_dependency(pwq->wq, work);
    3134             : 
    3135           2 :         insert_wq_barrier(pwq, barr, work, worker);
    3136           2 :         raw_spin_unlock_irq(&pool->lock);
    3137             : 
    3138             :         /*
    3139             :          * Force a lock recursion deadlock when using flush_work() inside a
    3140             :          * single-threaded or rescuer equipped workqueue.
    3141             :          *
    3142             :          * For single threaded workqueues the deadlock happens when the work
    3143             :          * is after the work issuing the flush_work(). For rescuer equipped
    3144             :          * workqueues the deadlock happens when the rescuer stalls, blocking
    3145             :          * forward progress.
    3146             :          */
    3147             :         if (!from_cancel &&
    3148             :             (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)) {
    3149             :                 lock_map_acquire(&pwq->wq->lockdep_map);
    3150             :                 lock_map_release(&pwq->wq->lockdep_map);
    3151             :         }
    3152             :         rcu_read_unlock();
    3153           2 :         return true;
    3154             : already_gone:
    3155           2 :         raw_spin_unlock_irq(&pool->lock);
    3156             :         rcu_read_unlock();
    3157           2 :         return false;
    3158             : }
    3159             : 
    3160          21 : static bool __flush_work(struct work_struct *work, bool from_cancel)
    3161             : {
    3162             :         struct wq_barrier barr;
    3163             : 
    3164          21 :         if (WARN_ON(!wq_online))
    3165             :                 return false;
    3166             : 
    3167          21 :         if (WARN_ON(!work->func))
    3168             :                 return false;
    3169             : 
    3170             :         lock_map_acquire(&work->lockdep_map);
    3171             :         lock_map_release(&work->lockdep_map);
    3172             : 
    3173          21 :         if (start_flush_work(work, &barr, from_cancel)) {
    3174           2 :                 wait_for_completion(&barr.done);
    3175           2 :                 destroy_work_on_stack(&barr.work);
    3176           2 :                 return true;
    3177             :         } else {
    3178             :                 return false;
    3179             :         }
    3180             : }
    3181             : 
    3182             : /**
    3183             :  * flush_work - wait for a work to finish executing the last queueing instance
    3184             :  * @work: the work to flush
    3185             :  *
    3186             :  * Wait until @work has finished execution.  @work is guaranteed to be idle
    3187             :  * on return if it hasn't been requeued since flush started.
    3188             :  *
    3189             :  * Return:
    3190             :  * %true if flush_work() waited for the work to finish execution,
    3191             :  * %false if it was already idle.
    3192             :  */
    3193          21 : bool flush_work(struct work_struct *work)
    3194             : {
    3195          21 :         return __flush_work(work, false);
    3196             : }
    3197             : EXPORT_SYMBOL_GPL(flush_work);
    3198             : 
    3199             : struct cwt_wait {
    3200             :         wait_queue_entry_t              wait;
    3201             :         struct work_struct      *work;
    3202             : };
    3203             : 
    3204           0 : static int cwt_wakefn(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
    3205             : {
    3206           0 :         struct cwt_wait *cwait = container_of(wait, struct cwt_wait, wait);
    3207             : 
    3208           0 :         if (cwait->work != key)
    3209             :                 return 0;
    3210           0 :         return autoremove_wake_function(wait, mode, sync, key);
    3211             : }
    3212             : 
    3213           0 : static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
    3214             : {
    3215             :         static DECLARE_WAIT_QUEUE_HEAD(cancel_waitq);
    3216             :         unsigned long flags;
    3217             :         int ret;
    3218             : 
    3219             :         do {
    3220           0 :                 ret = try_to_grab_pending(work, is_dwork, &flags);
    3221             :                 /*
    3222             :                  * If someone else is already canceling, wait for it to
    3223             :                  * finish.  flush_work() doesn't work for PREEMPT_NONE
    3224             :                  * because we may get scheduled between @work's completion
    3225             :                  * and the other canceling task resuming and clearing
    3226             :                  * CANCELING - flush_work() will return false immediately
    3227             :                  * as @work is no longer busy, try_to_grab_pending() will
    3228             :                  * return -ENOENT as @work is still being canceled and the
    3229             :                  * other canceling task won't be able to clear CANCELING as
    3230             :                  * we're hogging the CPU.
    3231             :                  *
    3232             :                  * Let's wait for completion using a waitqueue.  As this
    3233             :                  * may lead to the thundering herd problem, use a custom
    3234             :                  * wake function which matches @work along with exclusive
    3235             :                  * wait and wakeup.
    3236             :                  */
    3237           0 :                 if (unlikely(ret == -ENOENT)) {
    3238             :                         struct cwt_wait cwait;
    3239             : 
    3240           0 :                         init_wait(&cwait.wait);
    3241           0 :                         cwait.wait.func = cwt_wakefn;
    3242           0 :                         cwait.work = work;
    3243             : 
    3244           0 :                         prepare_to_wait_exclusive(&cancel_waitq, &cwait.wait,
    3245             :                                                   TASK_UNINTERRUPTIBLE);
    3246           0 :                         if (work_is_canceling(work))
    3247           0 :                                 schedule();
    3248           0 :                         finish_wait(&cancel_waitq, &cwait.wait);
    3249             :                 }
    3250           0 :         } while (unlikely(ret < 0));
    3251             : 
    3252             :         /* tell other tasks trying to grab @work to back off */
    3253           0 :         mark_work_canceling(work);
    3254           0 :         local_irq_restore(flags);
    3255             : 
    3256             :         /*
    3257             :          * This allows canceling during early boot.  We know that @work
    3258             :          * isn't executing.
    3259             :          */
    3260           0 :         if (wq_online)
    3261           0 :                 __flush_work(work, true);
    3262             : 
    3263           0 :         clear_work_data(work);
    3264             : 
    3265             :         /*
    3266             :          * Paired with prepare_to_wait() above so that either
    3267             :          * waitqueue_active() is visible here or !work_is_canceling() is
    3268             :          * visible there.
    3269             :          */
    3270           0 :         smp_mb();
    3271           0 :         if (waitqueue_active(&cancel_waitq))
    3272           0 :                 __wake_up(&cancel_waitq, TASK_NORMAL, 1, work);
    3273             : 
    3274           0 :         return ret;
    3275             : }
    3276             : 
    3277             : /**
    3278             :  * cancel_work_sync - cancel a work and wait for it to finish
    3279             :  * @work: the work to cancel
    3280             :  *
    3281             :  * Cancel @work and wait for its execution to finish.  This function
    3282             :  * can be used even if the work re-queues itself or migrates to
    3283             :  * another workqueue.  On return from this function, @work is
    3284             :  * guaranteed to be not pending or executing on any CPU.
    3285             :  *
    3286             :  * cancel_work_sync(&delayed_work->work) must not be used for
    3287             :  * delayed_work's.  Use cancel_delayed_work_sync() instead.
    3288             :  *
    3289             :  * The caller must ensure that the workqueue on which @work was last
    3290             :  * queued can't be destroyed before this function returns.
    3291             :  *
    3292             :  * Return:
    3293             :  * %true if @work was pending, %false otherwise.
    3294             :  */
    3295           0 : bool cancel_work_sync(struct work_struct *work)
    3296             : {
    3297           0 :         return __cancel_work_timer(work, false);
    3298             : }
    3299             : EXPORT_SYMBOL_GPL(cancel_work_sync);
    3300             : 
    3301             : /**
    3302             :  * flush_delayed_work - wait for a dwork to finish executing the last queueing
    3303             :  * @dwork: the delayed work to flush
    3304             :  *
    3305             :  * Delayed timer is cancelled and the pending work is queued for
    3306             :  * immediate execution.  Like flush_work(), this function only
    3307             :  * considers the last queueing instance of @dwork.
    3308             :  *
    3309             :  * Return:
    3310             :  * %true if flush_work() waited for the work to finish execution,
    3311             :  * %false if it was already idle.
    3312             :  */
    3313           0 : bool flush_delayed_work(struct delayed_work *dwork)
    3314             : {
    3315             :         local_irq_disable();
    3316           0 :         if (del_timer_sync(&dwork->timer))
    3317           0 :                 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
    3318             :         local_irq_enable();
    3319           0 :         return flush_work(&dwork->work);
    3320             : }
    3321             : EXPORT_SYMBOL(flush_delayed_work);
    3322             : 
    3323             : /**
    3324             :  * flush_rcu_work - wait for a rwork to finish executing the last queueing
    3325             :  * @rwork: the rcu work to flush
    3326             :  *
    3327             :  * Return:
    3328             :  * %true if flush_rcu_work() waited for the work to finish execution,
    3329             :  * %false if it was already idle.
    3330             :  */
    3331           0 : bool flush_rcu_work(struct rcu_work *rwork)
    3332             : {
    3333           0 :         if (test_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&rwork->work))) {
    3334           0 :                 rcu_barrier();
    3335           0 :                 flush_work(&rwork->work);
    3336           0 :                 return true;
    3337             :         } else {
    3338           0 :                 return flush_work(&rwork->work);
    3339             :         }
    3340             : }
    3341             : EXPORT_SYMBOL(flush_rcu_work);
    3342             : 
    3343          33 : static bool __cancel_work(struct work_struct *work, bool is_dwork)
    3344             : {
    3345             :         unsigned long flags;
    3346             :         int ret;
    3347             : 
    3348             :         do {
    3349          33 :                 ret = try_to_grab_pending(work, is_dwork, &flags);
    3350          33 :         } while (unlikely(ret == -EAGAIN));
    3351             : 
    3352          33 :         if (unlikely(ret < 0))
    3353             :                 return false;
    3354             : 
    3355          66 :         set_work_pool_and_clear_pending(work, get_work_pool_id(work));
    3356          66 :         local_irq_restore(flags);
    3357          33 :         return ret;
    3358             : }
    3359             : 
    3360             : /*
    3361             :  * See cancel_delayed_work()
    3362             :  */
    3363           0 : bool cancel_work(struct work_struct *work)
    3364             : {
    3365           0 :         return __cancel_work(work, false);
    3366             : }
    3367             : EXPORT_SYMBOL(cancel_work);
    3368             : 
    3369             : /**
    3370             :  * cancel_delayed_work - cancel a delayed work
    3371             :  * @dwork: delayed_work to cancel
    3372             :  *
    3373             :  * Kill off a pending delayed_work.
    3374             :  *
    3375             :  * Return: %true if @dwork was pending and canceled; %false if it wasn't
    3376             :  * pending.
    3377             :  *
    3378             :  * Note:
    3379             :  * The work callback function may still be running on return, unless
    3380             :  * it returns %true and the work doesn't re-arm itself.  Explicitly flush or
    3381             :  * use cancel_delayed_work_sync() to wait on it.
    3382             :  *
    3383             :  * This function is safe to call from any context including IRQ handler.
    3384             :  */
    3385          33 : bool cancel_delayed_work(struct delayed_work *dwork)
    3386             : {
    3387          33 :         return __cancel_work(&dwork->work, true);
    3388             : }
    3389             : EXPORT_SYMBOL(cancel_delayed_work);
    3390             : 
    3391             : /**
    3392             :  * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
    3393             :  * @dwork: the delayed work cancel
    3394             :  *
    3395             :  * This is cancel_work_sync() for delayed works.
    3396             :  *
    3397             :  * Return:
    3398             :  * %true if @dwork was pending, %false otherwise.
    3399             :  */
    3400           0 : bool cancel_delayed_work_sync(struct delayed_work *dwork)
    3401             : {
    3402           0 :         return __cancel_work_timer(&dwork->work, true);
    3403             : }
    3404             : EXPORT_SYMBOL(cancel_delayed_work_sync);
    3405             : 
    3406             : /**
    3407             :  * schedule_on_each_cpu - execute a function synchronously on each online CPU
    3408             :  * @func: the function to call
    3409             :  *
    3410             :  * schedule_on_each_cpu() executes @func on each online CPU using the
    3411             :  * system workqueue and blocks until all CPUs have completed.
    3412             :  * schedule_on_each_cpu() is very slow.
    3413             :  *
    3414             :  * Return:
    3415             :  * 0 on success, -errno on failure.
    3416             :  */
    3417           0 : int schedule_on_each_cpu(work_func_t func)
    3418             : {
    3419             :         int cpu;
    3420             :         struct work_struct __percpu *works;
    3421             : 
    3422           0 :         works = alloc_percpu(struct work_struct);
    3423           0 :         if (!works)
    3424             :                 return -ENOMEM;
    3425             : 
    3426             :         cpus_read_lock();
    3427             : 
    3428           0 :         for_each_online_cpu(cpu) {
    3429           0 :                 struct work_struct *work = per_cpu_ptr(works, cpu);
    3430             : 
    3431           0 :                 INIT_WORK(work, func);
    3432           0 :                 schedule_work_on(cpu, work);
    3433             :         }
    3434             : 
    3435           0 :         for_each_online_cpu(cpu)
    3436           0 :                 flush_work(per_cpu_ptr(works, cpu));
    3437             : 
    3438             :         cpus_read_unlock();
    3439           0 :         free_percpu(works);
    3440           0 :         return 0;
    3441             : }
    3442             : 
    3443             : /**
    3444             :  * execute_in_process_context - reliably execute the routine with user context
    3445             :  * @fn:         the function to execute
    3446             :  * @ew:         guaranteed storage for the execute work structure (must
    3447             :  *              be available when the work executes)
    3448             :  *
    3449             :  * Executes the function immediately if process context is available,
    3450             :  * otherwise schedules the function for delayed execution.
    3451             :  *
    3452             :  * Return:      0 - function was executed
    3453             :  *              1 - function was scheduled for execution
    3454             :  */
    3455           0 : int execute_in_process_context(work_func_t fn, struct execute_work *ew)
    3456             : {
    3457           0 :         if (!in_interrupt()) {
    3458           0 :                 fn(&ew->work);
    3459           0 :                 return 0;
    3460             :         }
    3461             : 
    3462           0 :         INIT_WORK(&ew->work, fn);
    3463           0 :         schedule_work(&ew->work);
    3464             : 
    3465           0 :         return 1;
    3466             : }
    3467             : EXPORT_SYMBOL_GPL(execute_in_process_context);
    3468             : 
    3469             : /**
    3470             :  * free_workqueue_attrs - free a workqueue_attrs
    3471             :  * @attrs: workqueue_attrs to free
    3472             :  *
    3473             :  * Undo alloc_workqueue_attrs().
    3474             :  */
    3475           0 : void free_workqueue_attrs(struct workqueue_attrs *attrs)
    3476             : {
    3477           3 :         if (attrs) {
    3478           6 :                 free_cpumask_var(attrs->cpumask);
    3479           6 :                 kfree(attrs);
    3480             :         }
    3481           0 : }
    3482             : 
    3483             : /**
    3484             :  * alloc_workqueue_attrs - allocate a workqueue_attrs
    3485             :  *
    3486             :  * Allocate a new workqueue_attrs, initialize with default settings and
    3487             :  * return it.
    3488             :  *
    3489             :  * Return: The allocated new workqueue_attr on success. %NULL on failure.
    3490             :  */
    3491          16 : struct workqueue_attrs *alloc_workqueue_attrs(void)
    3492             : {
    3493             :         struct workqueue_attrs *attrs;
    3494             : 
    3495          16 :         attrs = kzalloc(sizeof(*attrs), GFP_KERNEL);
    3496          16 :         if (!attrs)
    3497             :                 goto fail;
    3498          16 :         if (!alloc_cpumask_var(&attrs->cpumask, GFP_KERNEL))
    3499             :                 goto fail;
    3500             : 
    3501          32 :         cpumask_copy(attrs->cpumask, cpu_possible_mask);
    3502          16 :         return attrs;
    3503             : fail:
    3504             :         free_workqueue_attrs(attrs);
    3505             :         return NULL;
    3506             : }
    3507             : 
    3508             : static void copy_workqueue_attrs(struct workqueue_attrs *to,
    3509             :                                  const struct workqueue_attrs *from)
    3510             : {
    3511          13 :         to->nice = from->nice;
    3512          26 :         cpumask_copy(to->cpumask, from->cpumask);
    3513             :         /*
    3514             :          * Unlike hash and equality test, this function doesn't ignore
    3515             :          * ->no_numa as it is used for both pool and wq attrs.  Instead,
    3516             :          * get_unbound_pool() explicitly clears ->no_numa after copying.
    3517             :          */
    3518          13 :         to->no_numa = from->no_numa;
    3519             : }
    3520             : 
    3521             : /* hash value of the content of @attr */
    3522           3 : static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
    3523             : {
    3524           3 :         u32 hash = 0;
    3525             : 
    3526           6 :         hash = jhash_1word(attrs->nice, hash);
    3527           3 :         hash = jhash(cpumask_bits(attrs->cpumask),
    3528             :                      BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
    3529           3 :         return hash;
    3530             : }
    3531             : 
    3532             : /* content equality test */
    3533             : static bool wqattrs_equal(const struct workqueue_attrs *a,
    3534             :                           const struct workqueue_attrs *b)
    3535             : {
    3536           2 :         if (a->nice != b->nice)
    3537             :                 return false;
    3538           4 :         if (!cpumask_equal(a->cpumask, b->cpumask))
    3539             :                 return false;
    3540             :         return true;
    3541             : }
    3542             : 
    3543             : /**
    3544             :  * init_worker_pool - initialize a newly zalloc'd worker_pool
    3545             :  * @pool: worker_pool to initialize
    3546             :  *
    3547             :  * Initialize a newly zalloc'd @pool.  It also allocates @pool->attrs.
    3548             :  *
    3549             :  * Return: 0 on success, -errno on failure.  Even on failure, all fields
    3550             :  * inside @pool proper are initialized and put_unbound_pool() can be called
    3551             :  * on @pool safely to release it.
    3552             :  */
    3553           3 : static int init_worker_pool(struct worker_pool *pool)
    3554             : {
    3555             :         raw_spin_lock_init(&pool->lock);
    3556           3 :         pool->id = -1;
    3557           3 :         pool->cpu = -1;
    3558           3 :         pool->node = NUMA_NO_NODE;
    3559           3 :         pool->flags |= POOL_DISASSOCIATED;
    3560           3 :         pool->watchdog_ts = jiffies;
    3561           6 :         INIT_LIST_HEAD(&pool->worklist);
    3562           6 :         INIT_LIST_HEAD(&pool->idle_list);
    3563           6 :         hash_init(pool->busy_hash);
    3564             : 
    3565           3 :         timer_setup(&pool->idle_timer, idle_worker_timeout, TIMER_DEFERRABLE);
    3566           6 :         INIT_WORK(&pool->idle_cull_work, idle_cull_fn);
    3567             : 
    3568           3 :         timer_setup(&pool->mayday_timer, pool_mayday_timeout, 0);
    3569             : 
    3570           6 :         INIT_LIST_HEAD(&pool->workers);
    3571           6 :         INIT_LIST_HEAD(&pool->dying_workers);
    3572             : 
    3573           6 :         ida_init(&pool->worker_ida);
    3574           6 :         INIT_HLIST_NODE(&pool->hash_node);
    3575           3 :         pool->refcnt = 1;
    3576             : 
    3577             :         /* shouldn't fail above this point */
    3578           3 :         pool->attrs = alloc_workqueue_attrs();
    3579           3 :         if (!pool->attrs)
    3580             :                 return -ENOMEM;
    3581           3 :         return 0;
    3582             : }
    3583             : 
    3584             : #ifdef CONFIG_LOCKDEP
    3585             : static void wq_init_lockdep(struct workqueue_struct *wq)
    3586             : {
    3587             :         char *lock_name;
    3588             : 
    3589             :         lockdep_register_key(&wq->key);
    3590             :         lock_name = kasprintf(GFP_KERNEL, "%s%s", "(wq_completion)", wq->name);
    3591             :         if (!lock_name)
    3592             :                 lock_name = wq->name;
    3593             : 
    3594             :         wq->lock_name = lock_name;
    3595             :         lockdep_init_map(&wq->lockdep_map, lock_name, &wq->key, 0);
    3596             : }
    3597             : 
    3598             : static void wq_unregister_lockdep(struct workqueue_struct *wq)
    3599             : {
    3600             :         lockdep_unregister_key(&wq->key);
    3601             : }
    3602             : 
    3603             : static void wq_free_lockdep(struct workqueue_struct *wq)
    3604             : {
    3605             :         if (wq->lock_name != wq->name)
    3606             :                 kfree(wq->lock_name);
    3607             : }
    3608             : #else
    3609             : static void wq_init_lockdep(struct workqueue_struct *wq)
    3610             : {
    3611             : }
    3612             : 
    3613             : static void wq_unregister_lockdep(struct workqueue_struct *wq)
    3614             : {
    3615             : }
    3616             : 
    3617             : static void wq_free_lockdep(struct workqueue_struct *wq)
    3618             : {
    3619             : }
    3620             : #endif
    3621             : 
    3622           0 : static void rcu_free_wq(struct rcu_head *rcu)
    3623             : {
    3624           0 :         struct workqueue_struct *wq =
    3625           0 :                 container_of(rcu, struct workqueue_struct, rcu);
    3626             : 
    3627           0 :         wq_free_lockdep(wq);
    3628             : 
    3629           0 :         if (!(wq->flags & WQ_UNBOUND))
    3630           0 :                 free_percpu(wq->cpu_pwqs);
    3631             :         else
    3632           0 :                 free_workqueue_attrs(wq->unbound_attrs);
    3633             : 
    3634           0 :         kfree(wq);
    3635           0 : }
    3636             : 
    3637           0 : static void rcu_free_pool(struct rcu_head *rcu)
    3638             : {
    3639           0 :         struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
    3640             : 
    3641           0 :         ida_destroy(&pool->worker_ida);
    3642           0 :         free_workqueue_attrs(pool->attrs);
    3643           0 :         kfree(pool);
    3644           0 : }
    3645             : 
    3646             : /**
    3647             :  * put_unbound_pool - put a worker_pool
    3648             :  * @pool: worker_pool to put
    3649             :  *
    3650             :  * Put @pool.  If its refcnt reaches zero, it gets destroyed in RCU
    3651             :  * safe manner.  get_unbound_pool() calls this function on its failure path
    3652             :  * and this function should be able to release pools which went through,
    3653             :  * successfully or not, init_worker_pool().
    3654             :  *
    3655             :  * Should be called with wq_pool_mutex held.
    3656             :  */
    3657           0 : static void put_unbound_pool(struct worker_pool *pool)
    3658             : {
    3659           0 :         DECLARE_COMPLETION_ONSTACK(detach_completion);
    3660             :         struct list_head cull_list;
    3661             :         struct worker *worker;
    3662             : 
    3663           0 :         INIT_LIST_HEAD(&cull_list);
    3664             : 
    3665             :         lockdep_assert_held(&wq_pool_mutex);
    3666             : 
    3667           0 :         if (--pool->refcnt)
    3668           0 :                 return;
    3669             : 
    3670             :         /* sanity checks */
    3671           0 :         if (WARN_ON(!(pool->cpu < 0)) ||
    3672           0 :             WARN_ON(!list_empty(&pool->worklist)))
    3673             :                 return;
    3674             : 
    3675             :         /* release id and unhash */
    3676           0 :         if (pool->id >= 0)
    3677           0 :                 idr_remove(&worker_pool_idr, pool->id);
    3678           0 :         hash_del(&pool->hash_node);
    3679             : 
    3680             :         /*
    3681             :          * Become the manager and destroy all workers.  This prevents
    3682             :          * @pool's workers from blocking on attach_mutex.  We're the last
    3683             :          * manager and @pool gets freed with the flag set.
    3684             :          *
    3685             :          * Having a concurrent manager is quite unlikely to happen as we can
    3686             :          * only get here with
    3687             :          *   pwq->refcnt == pool->refcnt == 0
    3688             :          * which implies no work queued to the pool, which implies no worker can
    3689             :          * become the manager. However a worker could have taken the role of
    3690             :          * manager before the refcnts dropped to 0, since maybe_create_worker()
    3691             :          * drops pool->lock
    3692             :          */
    3693             :         while (true) {
    3694           0 :                 rcuwait_wait_event(&manager_wait,
    3695             :                                    !(pool->flags & POOL_MANAGER_ACTIVE),
    3696             :                                    TASK_UNINTERRUPTIBLE);
    3697             : 
    3698           0 :                 mutex_lock(&wq_pool_attach_mutex);
    3699           0 :                 raw_spin_lock_irq(&pool->lock);
    3700           0 :                 if (!(pool->flags & POOL_MANAGER_ACTIVE)) {
    3701           0 :                         pool->flags |= POOL_MANAGER_ACTIVE;
    3702             :                         break;
    3703             :                 }
    3704           0 :                 raw_spin_unlock_irq(&pool->lock);
    3705           0 :                 mutex_unlock(&wq_pool_attach_mutex);
    3706             :         }
    3707             : 
    3708           0 :         while ((worker = first_idle_worker(pool)))
    3709           0 :                 set_worker_dying(worker, &cull_list);
    3710           0 :         WARN_ON(pool->nr_workers || pool->nr_idle);
    3711           0 :         raw_spin_unlock_irq(&pool->lock);
    3712             : 
    3713           0 :         wake_dying_workers(&cull_list);
    3714             : 
    3715           0 :         if (!list_empty(&pool->workers) || !list_empty(&pool->dying_workers))
    3716           0 :                 pool->detach_completion = &detach_completion;
    3717           0 :         mutex_unlock(&wq_pool_attach_mutex);
    3718             : 
    3719           0 :         if (pool->detach_completion)
    3720           0 :                 wait_for_completion(pool->detach_completion);
    3721             : 
    3722             :         /* shut down the timers */
    3723           0 :         del_timer_sync(&pool->idle_timer);
    3724           0 :         cancel_work_sync(&pool->idle_cull_work);
    3725           0 :         del_timer_sync(&pool->mayday_timer);
    3726             : 
    3727             :         /* RCU protected to allow dereferences from get_work_pool() */
    3728           0 :         call_rcu(&pool->rcu, rcu_free_pool);
    3729             : }
    3730             : 
    3731             : /**
    3732             :  * get_unbound_pool - get a worker_pool with the specified attributes
    3733             :  * @attrs: the attributes of the worker_pool to get
    3734             :  *
    3735             :  * Obtain a worker_pool which has the same attributes as @attrs, bump the
    3736             :  * reference count and return it.  If there already is a matching
    3737             :  * worker_pool, it will be used; otherwise, this function attempts to
    3738             :  * create a new one.
    3739             :  *
    3740             :  * Should be called with wq_pool_mutex held.
    3741             :  *
    3742             :  * Return: On success, a worker_pool with the same attributes as @attrs.
    3743             :  * On failure, %NULL.
    3744             :  */
    3745           3 : static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
    3746             : {
    3747           3 :         u32 hash = wqattrs_hash(attrs);
    3748             :         struct worker_pool *pool;
    3749             :         int node;
    3750           3 :         int target_node = NUMA_NO_NODE;
    3751             : 
    3752             :         lockdep_assert_held(&wq_pool_mutex);
    3753             : 
    3754             :         /* do we already have a matching pool? */
    3755           3 :         hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
    3756           4 :                 if (wqattrs_equal(pool->attrs, attrs)) {
    3757           2 :                         pool->refcnt++;
    3758           2 :                         return pool;
    3759             :                 }
    3760             :         }
    3761             : 
    3762             :         /* if cpumask is contained inside a NUMA node, we belong to that node */
    3763           1 :         if (wq_numa_enabled) {
    3764           0 :                 for_each_node(node) {
    3765           0 :                         if (cpumask_subset(attrs->cpumask,
    3766           0 :                                            wq_numa_possible_cpumask[node])) {
    3767             :                                 target_node = node;
    3768             :                                 break;
    3769             :                         }
    3770             :                 }
    3771             :         }
    3772             : 
    3773             :         /* nope, create a new one */
    3774           1 :         pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, target_node);
    3775           1 :         if (!pool || init_worker_pool(pool) < 0)
    3776             :                 goto fail;
    3777             : 
    3778             :         lockdep_set_subclass(&pool->lock, 1);    /* see put_pwq() */
    3779           2 :         copy_workqueue_attrs(pool->attrs, attrs);
    3780           1 :         pool->node = target_node;
    3781             : 
    3782             :         /*
    3783             :          * no_numa isn't a worker_pool attribute, always clear it.  See
    3784             :          * 'struct workqueue_attrs' comments for detail.
    3785             :          */
    3786           1 :         pool->attrs->no_numa = false;
    3787             : 
    3788           1 :         if (worker_pool_assign_id(pool) < 0)
    3789             :                 goto fail;
    3790             : 
    3791             :         /* create and start the initial worker */
    3792           1 :         if (wq_online && !create_worker(pool))
    3793             :                 goto fail;
    3794             : 
    3795             :         /* install */
    3796           2 :         hash_add(unbound_pool_hash, &pool->hash_node, hash);
    3797             : 
    3798           1 :         return pool;
    3799             : fail:
    3800           0 :         if (pool)
    3801           0 :                 put_unbound_pool(pool);
    3802             :         return NULL;
    3803             : }
    3804             : 
    3805           0 : static void rcu_free_pwq(struct rcu_head *rcu)
    3806             : {
    3807           0 :         kmem_cache_free(pwq_cache,
    3808           0 :                         container_of(rcu, struct pool_workqueue, rcu));
    3809           0 : }
    3810             : 
    3811             : /*
    3812             :  * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt
    3813             :  * and needs to be destroyed.
    3814             :  */
    3815           0 : static void pwq_unbound_release_workfn(struct work_struct *work)
    3816             : {
    3817           0 :         struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
    3818             :                                                   unbound_release_work);
    3819           0 :         struct workqueue_struct *wq = pwq->wq;
    3820           0 :         struct worker_pool *pool = pwq->pool;
    3821           0 :         bool is_last = false;
    3822             : 
    3823             :         /*
    3824             :          * when @pwq is not linked, it doesn't hold any reference to the
    3825             :          * @wq, and @wq is invalid to access.
    3826             :          */
    3827           0 :         if (!list_empty(&pwq->pwqs_node)) {
    3828           0 :                 if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)))
    3829             :                         return;
    3830             : 
    3831           0 :                 mutex_lock(&wq->mutex);
    3832           0 :                 list_del_rcu(&pwq->pwqs_node);
    3833           0 :                 is_last = list_empty(&wq->pwqs);
    3834           0 :                 mutex_unlock(&wq->mutex);
    3835             :         }
    3836             : 
    3837           0 :         mutex_lock(&wq_pool_mutex);
    3838           0 :         put_unbound_pool(pool);
    3839           0 :         mutex_unlock(&wq_pool_mutex);
    3840             : 
    3841           0 :         call_rcu(&pwq->rcu, rcu_free_pwq);
    3842             : 
    3843             :         /*
    3844             :          * If we're the last pwq going away, @wq is already dead and no one
    3845             :          * is gonna access it anymore.  Schedule RCU free.
    3846             :          */
    3847           0 :         if (is_last) {
    3848           0 :                 wq_unregister_lockdep(wq);
    3849           0 :                 call_rcu(&wq->rcu, rcu_free_wq);
    3850             :         }
    3851             : }
    3852             : 
    3853             : /**
    3854             :  * pwq_adjust_max_active - update a pwq's max_active to the current setting
    3855             :  * @pwq: target pool_workqueue
    3856             :  *
    3857             :  * If @pwq isn't freezing, set @pwq->max_active to the associated
    3858             :  * workqueue's saved_max_active and activate inactive work items
    3859             :  * accordingly.  If @pwq is freezing, clear @pwq->max_active to zero.
    3860             :  */
    3861          28 : static void pwq_adjust_max_active(struct pool_workqueue *pwq)
    3862             : {
    3863          28 :         struct workqueue_struct *wq = pwq->wq;
    3864          28 :         bool freezable = wq->flags & WQ_FREEZABLE;
    3865             :         unsigned long flags;
    3866             : 
    3867             :         /* for @wq->saved_max_active */
    3868             :         lockdep_assert_held(&wq->mutex);
    3869             : 
    3870             :         /* fast exit for non-freezable wqs */
    3871          28 :         if (!freezable && pwq->max_active == wq->saved_max_active)
    3872             :                 return;
    3873             : 
    3874             :         /* this function can be called during early boot w/ irq disabled */
    3875          17 :         raw_spin_lock_irqsave(&pwq->pool->lock, flags);
    3876             : 
    3877             :         /*
    3878             :          * During [un]freezing, the caller is responsible for ensuring that
    3879             :          * this function is called at least once after @workqueue_freezing
    3880             :          * is updated and visible.
    3881             :          */
    3882          17 :         if (!freezable || !workqueue_freezing) {
    3883          17 :                 bool kick = false;
    3884             : 
    3885          17 :                 pwq->max_active = wq->saved_max_active;
    3886             : 
    3887          51 :                 while (!list_empty(&pwq->inactive_works) &&
    3888           0 :                        pwq->nr_active < pwq->max_active) {
    3889           0 :                         pwq_activate_first_inactive(pwq);
    3890           0 :                         kick = true;
    3891             :                 }
    3892             : 
    3893             :                 /*
    3894             :                  * Need to kick a worker after thawed or an unbound wq's
    3895             :                  * max_active is bumped. In realtime scenarios, always kicking a
    3896             :                  * worker will cause interference on the isolated cpu cores, so
    3897             :                  * let's kick iff work items were activated.
    3898             :                  */
    3899          17 :                 if (kick)
    3900           0 :                         wake_up_worker(pwq->pool);
    3901             :         } else {
    3902           0 :                 pwq->max_active = 0;
    3903             :         }
    3904             : 
    3905          34 :         raw_spin_unlock_irqrestore(&pwq->pool->lock, flags);
    3906             : }
    3907             : 
    3908             : /* initialize newly allocated @pwq which is associated with @wq and @pool */
    3909          14 : static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
    3910             :                      struct worker_pool *pool)
    3911             : {
    3912          14 :         BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);
    3913             : 
    3914          14 :         memset(pwq, 0, sizeof(*pwq));
    3915             : 
    3916          14 :         pwq->pool = pool;
    3917          14 :         pwq->wq = wq;
    3918          14 :         pwq->flush_color = -1;
    3919          14 :         pwq->refcnt = 1;
    3920          28 :         INIT_LIST_HEAD(&pwq->inactive_works);
    3921          28 :         INIT_LIST_HEAD(&pwq->pwqs_node);
    3922          28 :         INIT_LIST_HEAD(&pwq->mayday_node);
    3923          28 :         INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn);
    3924          14 : }
    3925             : 
    3926             : /* sync @pwq with the current state of its associated wq and link it */
    3927          17 : static void link_pwq(struct pool_workqueue *pwq)
    3928             : {
    3929          17 :         struct workqueue_struct *wq = pwq->wq;
    3930             : 
    3931             :         lockdep_assert_held(&wq->mutex);
    3932             : 
    3933             :         /* may be called multiple times, ignore if already linked */
    3934          34 :         if (!list_empty(&pwq->pwqs_node))
    3935             :                 return;
    3936             : 
    3937             :         /* set the matching work_color */
    3938          14 :         pwq->work_color = wq->work_color;
    3939             : 
    3940             :         /* sync max_active to the current setting */
    3941          14 :         pwq_adjust_max_active(pwq);
    3942             : 
    3943             :         /* link in @pwq */
    3944          14 :         list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
    3945             : }
    3946             : 
    3947             : /* obtain a pool matching @attr and create a pwq associating the pool and @wq */
    3948           3 : static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
    3949             :                                         const struct workqueue_attrs *attrs)
    3950             : {
    3951             :         struct worker_pool *pool;
    3952             :         struct pool_workqueue *pwq;
    3953             : 
    3954             :         lockdep_assert_held(&wq_pool_mutex);
    3955             : 
    3956           3 :         pool = get_unbound_pool(attrs);
    3957           3 :         if (!pool)
    3958             :                 return NULL;
    3959             : 
    3960           3 :         pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
    3961           3 :         if (!pwq) {
    3962           0 :                 put_unbound_pool(pool);
    3963           0 :                 return NULL;
    3964             :         }
    3965             : 
    3966           3 :         init_pwq(pwq, wq, pool);
    3967           3 :         return pwq;
    3968             : }
    3969             : 
    3970             : /**
    3971             :  * wq_calc_node_cpumask - calculate a wq_attrs' cpumask for the specified node
    3972             :  * @attrs: the wq_attrs of the default pwq of the target workqueue
    3973             :  * @node: the target NUMA node
    3974             :  * @cpu_going_down: if >= 0, the CPU to consider as offline
    3975             :  * @cpumask: outarg, the resulting cpumask
    3976             :  *
    3977             :  * Calculate the cpumask a workqueue with @attrs should use on @node.  If
    3978             :  * @cpu_going_down is >= 0, that cpu is considered offline during
    3979             :  * calculation.  The result is stored in @cpumask.
    3980             :  *
    3981             :  * If NUMA affinity is not enabled, @attrs->cpumask is always used.  If
    3982             :  * enabled and @node has online CPUs requested by @attrs, the returned
    3983             :  * cpumask is the intersection of the possible CPUs of @node and
    3984             :  * @attrs->cpumask.
    3985             :  *
    3986             :  * The caller is responsible for ensuring that the cpumask of @node stays
    3987             :  * stable.
    3988             :  *
    3989             :  * Return: %true if the resulting @cpumask is different from @attrs->cpumask,
    3990             :  * %false if equal.
    3991             :  */
    3992           3 : static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node,
    3993             :                                  int cpu_going_down, cpumask_t *cpumask)
    3994             : {
    3995           3 :         if (!wq_numa_enabled || attrs->no_numa)
    3996             :                 goto use_dfl;
    3997             : 
    3998             :         /* does @node have any online CPUs @attrs wants? */
    3999           0 :         cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask);
    4000           0 :         if (cpu_going_down >= 0)
    4001             :                 cpumask_clear_cpu(cpu_going_down, cpumask);
    4002             : 
    4003           0 :         if (cpumask_empty(cpumask))
    4004             :                 goto use_dfl;
    4005             : 
    4006             :         /* yeap, return possible CPUs in @node that @attrs wants */
    4007           0 :         cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]);
    4008             : 
    4009           0 :         if (cpumask_empty(cpumask)) {
    4010           0 :                 pr_warn_once("WARNING: workqueue cpumask: online intersect > "
    4011             :                                 "possible intersect\n");
    4012             :                 return false;
    4013             :         }
    4014             : 
    4015           0 :         return !cpumask_equal(cpumask, attrs->cpumask);
    4016             : 
    4017             : use_dfl:
    4018           6 :         cpumask_copy(cpumask, attrs->cpumask);
    4019           3 :         return false;
    4020             : }
    4021             : 
    4022             : /* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */
    4023             : static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq,
    4024             :                                                    int node,
    4025             :                                                    struct pool_workqueue *pwq)
    4026             : {
    4027             :         struct pool_workqueue *old_pwq;
    4028             : 
    4029             :         lockdep_assert_held(&wq_pool_mutex);
    4030             :         lockdep_assert_held(&wq->mutex);
    4031             : 
    4032             :         /* link_pwq() can handle duplicate calls */
    4033           3 :         link_pwq(pwq);
    4034             : 
    4035           3 :         old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
    4036           3 :         rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq);
    4037             :         return old_pwq;
    4038             : }
    4039             : 
    4040             : /* context to store the prepared attrs & pwqs before applying */
    4041             : struct apply_wqattrs_ctx {
    4042             :         struct workqueue_struct *wq;            /* target workqueue */
    4043             :         struct workqueue_attrs  *attrs;         /* attrs to apply */
    4044             :         struct list_head        list;           /* queued for batching commit */
    4045             :         struct pool_workqueue   *dfl_pwq;
    4046             :         struct pool_workqueue   *pwq_tbl[];
    4047             : };
    4048             : 
    4049             : /* free the resources after success or abort */
    4050           3 : static void apply_wqattrs_cleanup(struct apply_wqattrs_ctx *ctx)
    4051             : {
    4052           3 :         if (ctx) {
    4053             :                 int node;
    4054             : 
    4055           3 :                 for_each_node(node)
    4056           3 :                         put_pwq_unlocked(ctx->pwq_tbl[node]);
    4057           3 :                 put_pwq_unlocked(ctx->dfl_pwq);
    4058             : 
    4059           6 :                 free_workqueue_attrs(ctx->attrs);
    4060             : 
    4061           3 :                 kfree(ctx);
    4062             :         }
    4063           3 : }
    4064             : 
    4065             : /* allocate the attrs and pwqs for later installation */
    4066             : static struct apply_wqattrs_ctx *
    4067           3 : apply_wqattrs_prepare(struct workqueue_struct *wq,
    4068             :                       const struct workqueue_attrs *attrs,
    4069             :                       const cpumask_var_t unbound_cpumask)
    4070             : {
    4071             :         struct apply_wqattrs_ctx *ctx;
    4072             :         struct workqueue_attrs *new_attrs, *tmp_attrs;
    4073             :         int node;
    4074             : 
    4075             :         lockdep_assert_held(&wq_pool_mutex);
    4076             : 
    4077           3 :         ctx = kzalloc(struct_size(ctx, pwq_tbl, nr_node_ids), GFP_KERNEL);
    4078             : 
    4079           3 :         new_attrs = alloc_workqueue_attrs();
    4080           3 :         tmp_attrs = alloc_workqueue_attrs();
    4081           3 :         if (!ctx || !new_attrs || !tmp_attrs)
    4082             :                 goto out_free;
    4083             : 
    4084             :         /*
    4085             :          * Calculate the attrs of the default pwq with unbound_cpumask
    4086             :          * which is wq_unbound_cpumask or to set to wq_unbound_cpumask.
    4087             :          * If the user configured cpumask doesn't overlap with the
    4088             :          * wq_unbound_cpumask, we fallback to the wq_unbound_cpumask.
    4089             :          */
    4090           3 :         copy_workqueue_attrs(new_attrs, attrs);
    4091           6 :         cpumask_and(new_attrs->cpumask, new_attrs->cpumask, unbound_cpumask);
    4092           6 :         if (unlikely(cpumask_empty(new_attrs->cpumask)))
    4093           0 :                 cpumask_copy(new_attrs->cpumask, unbound_cpumask);
    4094             : 
    4095             :         /*
    4096             :          * We may create multiple pwqs with differing cpumasks.  Make a
    4097             :          * copy of @new_attrs which will be modified and used to obtain
    4098             :          * pools.
    4099             :          */
    4100           3 :         copy_workqueue_attrs(tmp_attrs, new_attrs);
    4101             : 
    4102             :         /*
    4103             :          * If something goes wrong during CPU up/down, we'll fall back to
    4104             :          * the default pwq covering whole @attrs->cpumask.  Always create
    4105             :          * it even if we don't use it immediately.
    4106             :          */
    4107           3 :         ctx->dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
    4108           3 :         if (!ctx->dfl_pwq)
    4109             :                 goto out_free;
    4110             : 
    4111           6 :         for_each_node(node) {
    4112           3 :                 if (wq_calc_node_cpumask(new_attrs, node, -1, tmp_attrs->cpumask)) {
    4113           0 :                         ctx->pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs);
    4114           0 :                         if (!ctx->pwq_tbl[node])
    4115             :                                 goto out_free;
    4116             :                 } else {
    4117           3 :                         ctx->dfl_pwq->refcnt++;
    4118           3 :                         ctx->pwq_tbl[node] = ctx->dfl_pwq;
    4119             :                 }
    4120             :         }
    4121             : 
    4122             :         /* save the user configured attrs and sanitize it. */
    4123           3 :         copy_workqueue_attrs(new_attrs, attrs);
    4124           6 :         cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);
    4125           3 :         ctx->attrs = new_attrs;
    4126             : 
    4127           3 :         ctx->wq = wq;
    4128           3 :         free_workqueue_attrs(tmp_attrs);
    4129           3 :         return ctx;
    4130             : 
    4131             : out_free:
    4132           0 :         free_workqueue_attrs(tmp_attrs);
    4133           0 :         free_workqueue_attrs(new_attrs);
    4134           0 :         apply_wqattrs_cleanup(ctx);
    4135           0 :         return NULL;
    4136             : }
    4137             : 
    4138             : /* set attrs and install prepared pwqs, @ctx points to old pwqs on return */
    4139           3 : static void apply_wqattrs_commit(struct apply_wqattrs_ctx *ctx)
    4140             : {
    4141             :         int node;
    4142             : 
    4143             :         /* all pwqs have been created successfully, let's install'em */
    4144           3 :         mutex_lock(&ctx->wq->mutex);
    4145             : 
    4146           6 :         copy_workqueue_attrs(ctx->wq->unbound_attrs, ctx->attrs);
    4147             : 
    4148             :         /* save the previous pwq and install the new one */
    4149           6 :         for_each_node(node)
    4150           6 :                 ctx->pwq_tbl[node] = numa_pwq_tbl_install(ctx->wq, node,
    4151             :                                                           ctx->pwq_tbl[node]);
    4152             : 
    4153             :         /* @dfl_pwq might not have been used, ensure it's linked */
    4154           3 :         link_pwq(ctx->dfl_pwq);
    4155           3 :         swap(ctx->wq->dfl_pwq, ctx->dfl_pwq);
    4156             : 
    4157           3 :         mutex_unlock(&ctx->wq->mutex);
    4158           3 : }
    4159             : 
    4160             : static void apply_wqattrs_lock(void)
    4161             : {
    4162             :         /* CPUs should stay stable across pwq creations and installations */
    4163             :         cpus_read_lock();
    4164           0 :         mutex_lock(&wq_pool_mutex);
    4165             : }
    4166             : 
    4167             : static void apply_wqattrs_unlock(void)
    4168             : {
    4169           0 :         mutex_unlock(&wq_pool_mutex);
    4170             :         cpus_read_unlock();
    4171             : }
    4172             : 
    4173           3 : static int apply_workqueue_attrs_locked(struct workqueue_struct *wq,
    4174             :                                         const struct workqueue_attrs *attrs)
    4175             : {
    4176             :         struct apply_wqattrs_ctx *ctx;
    4177             : 
    4178             :         /* only unbound workqueues can change attributes */
    4179           3 :         if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
    4180             :                 return -EINVAL;
    4181             : 
    4182             :         /* creating multiple pwqs breaks ordering guarantee */
    4183           6 :         if (!list_empty(&wq->pwqs)) {
    4184           0 :                 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
    4185             :                         return -EINVAL;
    4186             : 
    4187           0 :                 wq->flags &= ~__WQ_ORDERED;
    4188             :         }
    4189             : 
    4190           3 :         ctx = apply_wqattrs_prepare(wq, attrs, wq_unbound_cpumask);
    4191           3 :         if (!ctx)
    4192             :                 return -ENOMEM;
    4193             : 
    4194             :         /* the ctx has been prepared successfully, let's commit it */
    4195           3 :         apply_wqattrs_commit(ctx);
    4196           3 :         apply_wqattrs_cleanup(ctx);
    4197             : 
    4198           3 :         return 0;
    4199             : }
    4200             : 
    4201             : /**
    4202             :  * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
    4203             :  * @wq: the target workqueue
    4204             :  * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
    4205             :  *
    4206             :  * Apply @attrs to an unbound workqueue @wq.  Unless disabled, on NUMA
    4207             :  * machines, this function maps a separate pwq to each NUMA node with
    4208             :  * possibles CPUs in @attrs->cpumask so that work items are affine to the
    4209             :  * NUMA node it was issued on.  Older pwqs are released as in-flight work
    4210             :  * items finish.  Note that a work item which repeatedly requeues itself
    4211             :  * back-to-back will stay on its current pwq.
    4212             :  *
    4213             :  * Performs GFP_KERNEL allocations.
    4214             :  *
    4215             :  * Assumes caller has CPU hotplug read exclusion, i.e. cpus_read_lock().
    4216             :  *
    4217             :  * Return: 0 on success and -errno on failure.
    4218             :  */
    4219           3 : int apply_workqueue_attrs(struct workqueue_struct *wq,
    4220             :                           const struct workqueue_attrs *attrs)
    4221             : {
    4222             :         int ret;
    4223             : 
    4224             :         lockdep_assert_cpus_held();
    4225             : 
    4226           3 :         mutex_lock(&wq_pool_mutex);
    4227           3 :         ret = apply_workqueue_attrs_locked(wq, attrs);
    4228           3 :         mutex_unlock(&wq_pool_mutex);
    4229             : 
    4230           3 :         return ret;
    4231             : }
    4232             : 
    4233             : /**
    4234             :  * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug
    4235             :  * @wq: the target workqueue
    4236             :  * @cpu: the CPU coming up or going down
    4237             :  * @online: whether @cpu is coming up or going down
    4238             :  *
    4239             :  * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
    4240             :  * %CPU_DOWN_FAILED.  @cpu is being hot[un]plugged, update NUMA affinity of
    4241             :  * @wq accordingly.
    4242             :  *
    4243             :  * If NUMA affinity can't be adjusted due to memory allocation failure, it
    4244             :  * falls back to @wq->dfl_pwq which may not be optimal but is always
    4245             :  * correct.
    4246             :  *
    4247             :  * Note that when the last allowed CPU of a NUMA node goes offline for a
    4248             :  * workqueue with a cpumask spanning multiple nodes, the workers which were
    4249             :  * already executing the work items for the workqueue will lose their CPU
    4250             :  * affinity and may execute on any CPU.  This is similar to how per-cpu
    4251             :  * workqueues behave on CPU_DOWN.  If a workqueue user wants strict
    4252             :  * affinity, it's the user's responsibility to flush the work item from
    4253             :  * CPU_DOWN_PREPARE.
    4254             :  */
    4255           8 : static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu,
    4256             :                                    bool online)
    4257             : {
    4258           8 :         int node = cpu_to_node(cpu);
    4259           8 :         int cpu_off = online ? -1 : cpu;
    4260           8 :         struct pool_workqueue *old_pwq = NULL, *pwq;
    4261             :         struct workqueue_attrs *target_attrs;
    4262             :         cpumask_t *cpumask;
    4263             : 
    4264             :         lockdep_assert_held(&wq_pool_mutex);
    4265             : 
    4266           8 :         if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND) ||
    4267           0 :             wq->unbound_attrs->no_numa)
    4268             :                 return;
    4269             : 
    4270             :         /*
    4271             :          * We don't wanna alloc/free wq_attrs for each wq for each CPU.
    4272             :          * Let's use a preallocated one.  The following buf is protected by
    4273             :          * CPU hotplug exclusion.
    4274             :          */
    4275           0 :         target_attrs = wq_update_unbound_numa_attrs_buf;
    4276           0 :         cpumask = target_attrs->cpumask;
    4277             : 
    4278           0 :         copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
    4279           0 :         pwq = unbound_pwq_by_node(wq, node);
    4280             : 
    4281             :         /*
    4282             :          * Let's determine what needs to be done.  If the target cpumask is
    4283             :          * different from the default pwq's, we need to compare it to @pwq's
    4284             :          * and create a new one if they don't match.  If the target cpumask
    4285             :          * equals the default pwq's, the default pwq should be used.
    4286             :          */
    4287           0 :         if (wq_calc_node_cpumask(wq->dfl_pwq->pool->attrs, node, cpu_off, cpumask)) {
    4288           0 :                 if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask))
    4289             :                         return;
    4290             :         } else {
    4291             :                 goto use_dfl_pwq;
    4292             :         }
    4293             : 
    4294             :         /* create a new pwq */
    4295           0 :         pwq = alloc_unbound_pwq(wq, target_attrs);
    4296           0 :         if (!pwq) {
    4297           0 :                 pr_warn("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n",
    4298             :                         wq->name);
    4299           0 :                 goto use_dfl_pwq;
    4300             :         }
    4301             : 
    4302             :         /* Install the new pwq. */
    4303           0 :         mutex_lock(&wq->mutex);
    4304           0 :         old_pwq = numa_pwq_tbl_install(wq, node, pwq);
    4305           0 :         goto out_unlock;
    4306             : 
    4307             : use_dfl_pwq:
    4308           0 :         mutex_lock(&wq->mutex);
    4309           0 :         raw_spin_lock_irq(&wq->dfl_pwq->pool->lock);
    4310           0 :         get_pwq(wq->dfl_pwq);
    4311           0 :         raw_spin_unlock_irq(&wq->dfl_pwq->pool->lock);
    4312           0 :         old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq);
    4313             : out_unlock:
    4314           0 :         mutex_unlock(&wq->mutex);
    4315           0 :         put_pwq_unlocked(old_pwq);
    4316             : }
    4317             : 
    4318          14 : static int alloc_and_link_pwqs(struct workqueue_struct *wq)
    4319             : {
    4320          14 :         bool highpri = wq->flags & WQ_HIGHPRI;
    4321             :         int cpu, ret;
    4322             : 
    4323          14 :         if (!(wq->flags & WQ_UNBOUND)) {
    4324          11 :                 wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);
    4325          11 :                 if (!wq->cpu_pwqs)
    4326             :                         return -ENOMEM;
    4327             : 
    4328          11 :                 for_each_possible_cpu(cpu) {
    4329          11 :                         struct pool_workqueue *pwq =
    4330          11 :                                 per_cpu_ptr(wq->cpu_pwqs, cpu);
    4331          11 :                         struct worker_pool *cpu_pools =
    4332          11 :                                 per_cpu(cpu_worker_pools, cpu);
    4333             : 
    4334          11 :                         init_pwq(pwq, wq, &cpu_pools[highpri]);
    4335             : 
    4336          11 :                         mutex_lock(&wq->mutex);
    4337          11 :                         link_pwq(pwq);
    4338          11 :                         mutex_unlock(&wq->mutex);
    4339             :                 }
    4340             :                 return 0;
    4341             :         }
    4342             : 
    4343             :         cpus_read_lock();
    4344           3 :         if (wq->flags & __WQ_ORDERED) {
    4345           1 :                 ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]);
    4346             :                 /* there should only be single pwq for ordering guarantee */
    4347           1 :                 WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node ||
    4348             :                               wq->pwqs.prev != &wq->dfl_pwq->pwqs_node),
    4349             :                      "ordering guarantee broken for workqueue %s\n", wq->name);
    4350             :         } else {
    4351           2 :                 ret = apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
    4352             :         }
    4353             :         cpus_read_unlock();
    4354             : 
    4355             :         return ret;
    4356             : }
    4357             : 
    4358          14 : static int wq_clamp_max_active(int max_active, unsigned int flags,
    4359             :                                const char *name)
    4360             : {
    4361          14 :         int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
    4362             : 
    4363          14 :         if (max_active < 1 || max_active > lim)
    4364           0 :                 pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
    4365             :                         max_active, name, 1, lim);
    4366             : 
    4367          14 :         return clamp_val(max_active, 1, lim);
    4368             : }
    4369             : 
    4370             : /*
    4371             :  * Workqueues which may be used during memory reclaim should have a rescuer
    4372             :  * to guarantee forward progress.
    4373             :  */
    4374          14 : static int init_rescuer(struct workqueue_struct *wq)
    4375             : {
    4376             :         struct worker *rescuer;
    4377             :         int ret;
    4378             : 
    4379          14 :         if (!(wq->flags & WQ_MEM_RECLAIM))
    4380             :                 return 0;
    4381             : 
    4382           4 :         rescuer = alloc_worker(NUMA_NO_NODE);
    4383           4 :         if (!rescuer)
    4384             :                 return -ENOMEM;
    4385             : 
    4386           4 :         rescuer->rescue_wq = wq;
    4387           4 :         rescuer->task = kthread_create(rescuer_thread, rescuer, "%s", wq->name);
    4388           8 :         if (IS_ERR(rescuer->task)) {
    4389           0 :                 ret = PTR_ERR(rescuer->task);
    4390           0 :                 kfree(rescuer);
    4391           0 :                 return ret;
    4392             :         }
    4393             : 
    4394           4 :         wq->rescuer = rescuer;
    4395           4 :         kthread_bind_mask(rescuer->task, cpu_possible_mask);
    4396           4 :         wake_up_process(rescuer->task);
    4397             : 
    4398           4 :         return 0;
    4399             : }
    4400             : 
    4401             : __printf(1, 4)
    4402          14 : struct workqueue_struct *alloc_workqueue(const char *fmt,
    4403             :                                          unsigned int flags,
    4404             :                                          int max_active, ...)
    4405             : {
    4406          14 :         size_t tbl_size = 0;
    4407             :         va_list args;
    4408             :         struct workqueue_struct *wq;
    4409             :         struct pool_workqueue *pwq;
    4410             : 
    4411             :         /*
    4412             :          * Unbound && max_active == 1 used to imply ordered, which is no
    4413             :          * longer the case on NUMA machines due to per-node pools.  While
    4414             :          * alloc_ordered_workqueue() is the right way to create an ordered
    4415             :          * workqueue, keep the previous behavior to avoid subtle breakages
    4416             :          * on NUMA.
    4417             :          */
    4418          14 :         if ((flags & WQ_UNBOUND) && max_active == 1)
    4419           1 :                 flags |= __WQ_ORDERED;
    4420             : 
    4421             :         /* see the comment above the definition of WQ_POWER_EFFICIENT */
    4422          14 :         if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient)
    4423           0 :                 flags |= WQ_UNBOUND;
    4424             : 
    4425             :         /* allocate wq and format name */
    4426          14 :         if (flags & WQ_UNBOUND)
    4427           3 :                 tbl_size = nr_node_ids * sizeof(wq->numa_pwq_tbl[0]);
    4428             : 
    4429          14 :         wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL);
    4430          14 :         if (!wq)
    4431             :                 return NULL;
    4432             : 
    4433          14 :         if (flags & WQ_UNBOUND) {
    4434           3 :                 wq->unbound_attrs = alloc_workqueue_attrs();
    4435           3 :                 if (!wq->unbound_attrs)
    4436             :                         goto err_free_wq;
    4437             :         }
    4438             : 
    4439          14 :         va_start(args, max_active);
    4440          14 :         vsnprintf(wq->name, sizeof(wq->name), fmt, args);
    4441          14 :         va_end(args);
    4442             : 
    4443          14 :         max_active = max_active ?: WQ_DFL_ACTIVE;
    4444          14 :         max_active = wq_clamp_max_active(max_active, flags, wq->name);
    4445             : 
    4446             :         /* init wq */
    4447          14 :         wq->flags = flags;
    4448          14 :         wq->saved_max_active = max_active;
    4449          14 :         mutex_init(&wq->mutex);
    4450          28 :         atomic_set(&wq->nr_pwqs_to_flush, 0);
    4451          28 :         INIT_LIST_HEAD(&wq->pwqs);
    4452          28 :         INIT_LIST_HEAD(&wq->flusher_queue);
    4453          28 :         INIT_LIST_HEAD(&wq->flusher_overflow);
    4454          28 :         INIT_LIST_HEAD(&wq->maydays);
    4455             : 
    4456          14 :         wq_init_lockdep(wq);
    4457          28 :         INIT_LIST_HEAD(&wq->list);
    4458             : 
    4459          14 :         if (alloc_and_link_pwqs(wq) < 0)
    4460             :                 goto err_unreg_lockdep;
    4461             : 
    4462          14 :         if (wq_online && init_rescuer(wq) < 0)
    4463             :                 goto err_destroy;
    4464             : 
    4465          14 :         if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
    4466             :                 goto err_destroy;
    4467             : 
    4468             :         /*
    4469             :          * wq_pool_mutex protects global freeze state and workqueues list.
    4470             :          * Grab it, adjust max_active and add the new @wq to workqueues
    4471             :          * list.
    4472             :          */
    4473          14 :         mutex_lock(&wq_pool_mutex);
    4474             : 
    4475          14 :         mutex_lock(&wq->mutex);
    4476          28 :         for_each_pwq(pwq, wq)
    4477          14 :                 pwq_adjust_max_active(pwq);
    4478          14 :         mutex_unlock(&wq->mutex);
    4479             : 
    4480          28 :         list_add_tail_rcu(&wq->list, &workqueues);
    4481             : 
    4482          14 :         mutex_unlock(&wq_pool_mutex);
    4483             : 
    4484          14 :         return wq;
    4485             : 
    4486             : err_unreg_lockdep:
    4487             :         wq_unregister_lockdep(wq);
    4488             :         wq_free_lockdep(wq);
    4489             : err_free_wq:
    4490           0 :         free_workqueue_attrs(wq->unbound_attrs);
    4491           0 :         kfree(wq);
    4492           0 :         return NULL;
    4493             : err_destroy:
    4494           0 :         destroy_workqueue(wq);
    4495           0 :         return NULL;
    4496             : }
    4497             : EXPORT_SYMBOL_GPL(alloc_workqueue);
    4498             : 
    4499             : static bool pwq_busy(struct pool_workqueue *pwq)
    4500             : {
    4501             :         int i;
    4502             : 
    4503           0 :         for (i = 0; i < WORK_NR_COLORS; i++)
    4504           0 :                 if (pwq->nr_in_flight[i])
    4505             :                         return true;
    4506             : 
    4507           0 :         if ((pwq != pwq->wq->dfl_pwq) && (pwq->refcnt > 1))
    4508             :                 return true;
    4509           0 :         if (pwq->nr_active || !list_empty(&pwq->inactive_works))
    4510             :                 return true;
    4511             : 
    4512             :         return false;
    4513             : }
    4514             : 
    4515             : /**
    4516             :  * destroy_workqueue - safely terminate a workqueue
    4517             :  * @wq: target workqueue
    4518             :  *
    4519             :  * Safely destroy a workqueue. All work currently pending will be done first.
    4520             :  */
    4521           0 : void destroy_workqueue(struct workqueue_struct *wq)
    4522             : {
    4523             :         struct pool_workqueue *pwq;
    4524             :         int node;
    4525             : 
    4526             :         /*
    4527             :          * Remove it from sysfs first so that sanity check failure doesn't
    4528             :          * lead to sysfs name conflicts.
    4529             :          */
    4530           0 :         workqueue_sysfs_unregister(wq);
    4531             : 
    4532             :         /* mark the workqueue destruction is in progress */
    4533           0 :         mutex_lock(&wq->mutex);
    4534           0 :         wq->flags |= __WQ_DESTROYING;
    4535           0 :         mutex_unlock(&wq->mutex);
    4536             : 
    4537             :         /* drain it before proceeding with destruction */
    4538           0 :         drain_workqueue(wq);
    4539             : 
    4540             :         /* kill rescuer, if sanity checks fail, leave it w/o rescuer */
    4541           0 :         if (wq->rescuer) {
    4542           0 :                 struct worker *rescuer = wq->rescuer;
    4543             : 
    4544             :                 /* this prevents new queueing */
    4545           0 :                 raw_spin_lock_irq(&wq_mayday_lock);
    4546           0 :                 wq->rescuer = NULL;
    4547           0 :                 raw_spin_unlock_irq(&wq_mayday_lock);
    4548             : 
    4549             :                 /* rescuer will empty maydays list before exiting */
    4550           0 :                 kthread_stop(rescuer->task);
    4551           0 :                 kfree(rescuer);
    4552             :         }
    4553             : 
    4554             :         /*
    4555             :          * Sanity checks - grab all the locks so that we wait for all
    4556             :          * in-flight operations which may do put_pwq().
    4557             :          */
    4558           0 :         mutex_lock(&wq_pool_mutex);
    4559           0 :         mutex_lock(&wq->mutex);
    4560           0 :         for_each_pwq(pwq, wq) {
    4561           0 :                 raw_spin_lock_irq(&pwq->pool->lock);
    4562           0 :                 if (WARN_ON(pwq_busy(pwq))) {
    4563           0 :                         pr_warn("%s: %s has the following busy pwq\n",
    4564             :                                 __func__, wq->name);
    4565           0 :                         show_pwq(pwq);
    4566           0 :                         raw_spin_unlock_irq(&pwq->pool->lock);
    4567           0 :                         mutex_unlock(&wq->mutex);
    4568           0 :                         mutex_unlock(&wq_pool_mutex);
    4569           0 :                         show_one_workqueue(wq);
    4570           0 :                         return;
    4571             :                 }
    4572           0 :                 raw_spin_unlock_irq(&pwq->pool->lock);
    4573             :         }
    4574           0 :         mutex_unlock(&wq->mutex);
    4575             : 
    4576             :         /*
    4577             :          * wq list is used to freeze wq, remove from list after
    4578             :          * flushing is complete in case freeze races us.
    4579             :          */
    4580           0 :         list_del_rcu(&wq->list);
    4581           0 :         mutex_unlock(&wq_pool_mutex);
    4582             : 
    4583           0 :         if (!(wq->flags & WQ_UNBOUND)) {
    4584           0 :                 wq_unregister_lockdep(wq);
    4585             :                 /*
    4586             :                  * The base ref is never dropped on per-cpu pwqs.  Directly
    4587             :                  * schedule RCU free.
    4588             :                  */
    4589           0 :                 call_rcu(&wq->rcu, rcu_free_wq);
    4590             :         } else {
    4591             :                 /*
    4592             :                  * We're the sole accessor of @wq at this point.  Directly
    4593             :                  * access numa_pwq_tbl[] and dfl_pwq to put the base refs.
    4594             :                  * @wq will be freed when the last pwq is released.
    4595             :                  */
    4596           0 :                 for_each_node(node) {
    4597           0 :                         pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
    4598           0 :                         RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL);
    4599           0 :                         put_pwq_unlocked(pwq);
    4600             :                 }
    4601             : 
    4602             :                 /*
    4603             :                  * Put dfl_pwq.  @wq may be freed any time after dfl_pwq is
    4604             :                  * put.  Don't access it afterwards.
    4605             :                  */
    4606           0 :                 pwq = wq->dfl_pwq;
    4607           0 :                 wq->dfl_pwq = NULL;
    4608           0 :                 put_pwq_unlocked(pwq);
    4609             :         }
    4610             : }
    4611             : EXPORT_SYMBOL_GPL(destroy_workqueue);
    4612             : 
    4613             : /**
    4614             :  * workqueue_set_max_active - adjust max_active of a workqueue
    4615             :  * @wq: target workqueue
    4616             :  * @max_active: new max_active value.
    4617             :  *
    4618             :  * Set max_active of @wq to @max_active.
    4619             :  *
    4620             :  * CONTEXT:
    4621             :  * Don't call from IRQ context.
    4622             :  */
    4623           0 : void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
    4624             : {
    4625             :         struct pool_workqueue *pwq;
    4626             : 
    4627             :         /* disallow meddling with max_active for ordered workqueues */
    4628           0 :         if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
    4629             :                 return;
    4630             : 
    4631           0 :         max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
    4632             : 
    4633           0 :         mutex_lock(&wq->mutex);
    4634             : 
    4635           0 :         wq->flags &= ~__WQ_ORDERED;
    4636           0 :         wq->saved_max_active = max_active;
    4637             : 
    4638           0 :         for_each_pwq(pwq, wq)
    4639           0 :                 pwq_adjust_max_active(pwq);
    4640             : 
    4641           0 :         mutex_unlock(&wq->mutex);
    4642             : }
    4643             : EXPORT_SYMBOL_GPL(workqueue_set_max_active);
    4644             : 
    4645             : /**
    4646             :  * current_work - retrieve %current task's work struct
    4647             :  *
    4648             :  * Determine if %current task is a workqueue worker and what it's working on.
    4649             :  * Useful to find out the context that the %current task is running in.
    4650             :  *
    4651             :  * Return: work struct if %current task is a workqueue worker, %NULL otherwise.
    4652             :  */
    4653           0 : struct work_struct *current_work(void)
    4654             : {
    4655           0 :         struct worker *worker = current_wq_worker();
    4656             : 
    4657           0 :         return worker ? worker->current_work : NULL;
    4658             : }
    4659             : EXPORT_SYMBOL(current_work);
    4660             : 
    4661             : /**
    4662             :  * current_is_workqueue_rescuer - is %current workqueue rescuer?
    4663             :  *
    4664             :  * Determine whether %current is a workqueue rescuer.  Can be used from
    4665             :  * work functions to determine whether it's being run off the rescuer task.
    4666             :  *
    4667             :  * Return: %true if %current is a workqueue rescuer. %false otherwise.
    4668             :  */
    4669           0 : bool current_is_workqueue_rescuer(void)
    4670             : {
    4671           0 :         struct worker *worker = current_wq_worker();
    4672             : 
    4673           0 :         return worker && worker->rescue_wq;
    4674             : }
    4675             : 
    4676             : /**
    4677             :  * workqueue_congested - test whether a workqueue is congested
    4678             :  * @cpu: CPU in question
    4679             :  * @wq: target workqueue
    4680             :  *
    4681             :  * Test whether @wq's cpu workqueue for @cpu is congested.  There is
    4682             :  * no synchronization around this function and the test result is
    4683             :  * unreliable and only useful as advisory hints or for debugging.
    4684             :  *
    4685             :  * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
    4686             :  * Note that both per-cpu and unbound workqueues may be associated with
    4687             :  * multiple pool_workqueues which have separate congested states.  A
    4688             :  * workqueue being congested on one CPU doesn't mean the workqueue is also
    4689             :  * contested on other CPUs / NUMA nodes.
    4690             :  *
    4691             :  * Return:
    4692             :  * %true if congested, %false otherwise.
    4693             :  */
    4694           0 : bool workqueue_congested(int cpu, struct workqueue_struct *wq)
    4695             : {
    4696             :         struct pool_workqueue *pwq;
    4697             :         bool ret;
    4698             : 
    4699             :         rcu_read_lock();
    4700           0 :         preempt_disable();
    4701             : 
    4702             :         if (cpu == WORK_CPU_UNBOUND)
    4703             :                 cpu = smp_processor_id();
    4704             : 
    4705           0 :         if (!(wq->flags & WQ_UNBOUND))
    4706           0 :                 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
    4707             :         else
    4708           0 :                 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
    4709             : 
    4710           0 :         ret = !list_empty(&pwq->inactive_works);
    4711           0 :         preempt_enable();
    4712             :         rcu_read_unlock();
    4713             : 
    4714           0 :         return ret;
    4715             : }
    4716             : EXPORT_SYMBOL_GPL(workqueue_congested);
    4717             : 
    4718             : /**
    4719             :  * work_busy - test whether a work is currently pending or running
    4720             :  * @work: the work to be tested
    4721             :  *
    4722             :  * Test whether @work is currently pending or running.  There is no
    4723             :  * synchronization around this function and the test result is
    4724             :  * unreliable and only useful as advisory hints or for debugging.
    4725             :  *
    4726             :  * Return:
    4727             :  * OR'd bitmask of WORK_BUSY_* bits.
    4728             :  */
    4729           0 : unsigned int work_busy(struct work_struct *work)
    4730             : {
    4731             :         struct worker_pool *pool;
    4732             :         unsigned long flags;
    4733           0 :         unsigned int ret = 0;
    4734             : 
    4735           0 :         if (work_pending(work))
    4736           0 :                 ret |= WORK_BUSY_PENDING;
    4737             : 
    4738             :         rcu_read_lock();
    4739           0 :         pool = get_work_pool(work);
    4740           0 :         if (pool) {
    4741           0 :                 raw_spin_lock_irqsave(&pool->lock, flags);
    4742           0 :                 if (find_worker_executing_work(pool, work))
    4743           0 :                         ret |= WORK_BUSY_RUNNING;
    4744           0 :                 raw_spin_unlock_irqrestore(&pool->lock, flags);
    4745             :         }
    4746             :         rcu_read_unlock();
    4747             : 
    4748           0 :         return ret;
    4749             : }
    4750             : EXPORT_SYMBOL_GPL(work_busy);
    4751             : 
    4752             : /**
    4753             :  * set_worker_desc - set description for the current work item
    4754             :  * @fmt: printf-style format string
    4755             :  * @...: arguments for the format string
    4756             :  *
    4757             :  * This function can be called by a running work function to describe what
    4758             :  * the work item is about.  If the worker task gets dumped, this
    4759             :  * information will be printed out together to help debugging.  The
    4760             :  * description can be at most WORKER_DESC_LEN including the trailing '\0'.
    4761             :  */
    4762           0 : void set_worker_desc(const char *fmt, ...)
    4763             : {
    4764           0 :         struct worker *worker = current_wq_worker();
    4765             :         va_list args;
    4766             : 
    4767           0 :         if (worker) {
    4768           0 :                 va_start(args, fmt);
    4769           0 :                 vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
    4770           0 :                 va_end(args);
    4771             :         }
    4772           0 : }
    4773             : EXPORT_SYMBOL_GPL(set_worker_desc);
    4774             : 
    4775             : /**
    4776             :  * print_worker_info - print out worker information and description
    4777             :  * @log_lvl: the log level to use when printing
    4778             :  * @task: target task
    4779             :  *
    4780             :  * If @task is a worker and currently executing a work item, print out the
    4781             :  * name of the workqueue being serviced and worker description set with
    4782             :  * set_worker_desc() by the currently executing work item.
    4783             :  *
    4784             :  * This function can be safely called on any task as long as the
    4785             :  * task_struct itself is accessible.  While safe, this function isn't
    4786             :  * synchronized and may print out mixups or garbages of limited length.
    4787             :  */
    4788           5 : void print_worker_info(const char *log_lvl, struct task_struct *task)
    4789             : {
    4790           5 :         work_func_t *fn = NULL;
    4791           5 :         char name[WQ_NAME_LEN] = { };
    4792           5 :         char desc[WORKER_DESC_LEN] = { };
    4793           5 :         struct pool_workqueue *pwq = NULL;
    4794           5 :         struct workqueue_struct *wq = NULL;
    4795             :         struct worker *worker;
    4796             : 
    4797           5 :         if (!(task->flags & PF_WQ_WORKER))
    4798           5 :                 return;
    4799             : 
    4800             :         /*
    4801             :          * This function is called without any synchronization and @task
    4802             :          * could be in any state.  Be careful with dereferences.
    4803             :          */
    4804           0 :         worker = kthread_probe_data(task);
    4805             : 
    4806             :         /*
    4807             :          * Carefully copy the associated workqueue's workfn, name and desc.
    4808             :          * Keep the original last '\0' in case the original is garbage.
    4809             :          */
    4810           0 :         copy_from_kernel_nofault(&fn, &worker->current_func, sizeof(fn));
    4811           0 :         copy_from_kernel_nofault(&pwq, &worker->current_pwq, sizeof(pwq));
    4812           0 :         copy_from_kernel_nofault(&wq, &pwq->wq, sizeof(wq));
    4813           0 :         copy_from_kernel_nofault(name, wq->name, sizeof(name) - 1);
    4814           0 :         copy_from_kernel_nofault(desc, worker->desc, sizeof(desc) - 1);
    4815             : 
    4816           0 :         if (fn || name[0] || desc[0]) {
    4817           0 :                 printk("%sWorkqueue: %s %ps", log_lvl, name, fn);
    4818           0 :                 if (strcmp(name, desc))
    4819           0 :                         pr_cont(" (%s)", desc);
    4820           0 :                 pr_cont("\n");
    4821             :         }
    4822             : }
    4823             : 
    4824           0 : static void pr_cont_pool_info(struct worker_pool *pool)
    4825             : {
    4826           0 :         pr_cont(" cpus=%*pbl", nr_cpumask_bits, pool->attrs->cpumask);
    4827           0 :         if (pool->node != NUMA_NO_NODE)
    4828           0 :                 pr_cont(" node=%d", pool->node);
    4829           0 :         pr_cont(" flags=0x%x nice=%d", pool->flags, pool->attrs->nice);
    4830           0 : }
    4831             : 
    4832             : struct pr_cont_work_struct {
    4833             :         bool comma;
    4834             :         work_func_t func;
    4835             :         long ctr;
    4836             : };
    4837             : 
    4838           0 : static void pr_cont_work_flush(bool comma, work_func_t func, struct pr_cont_work_struct *pcwsp)
    4839             : {
    4840           0 :         if (!pcwsp->ctr)
    4841             :                 goto out_record;
    4842           0 :         if (func == pcwsp->func) {
    4843           0 :                 pcwsp->ctr++;
    4844           0 :                 return;
    4845             :         }
    4846           0 :         if (pcwsp->ctr == 1)
    4847           0 :                 pr_cont("%s %ps", pcwsp->comma ? "," : "", pcwsp->func);
    4848             :         else
    4849           0 :                 pr_cont("%s %ld*%ps", pcwsp->comma ? "," : "", pcwsp->ctr, pcwsp->func);
    4850           0 :         pcwsp->ctr = 0;
    4851             : out_record:
    4852           0 :         if ((long)func == -1L)
    4853             :                 return;
    4854           0 :         pcwsp->comma = comma;
    4855           0 :         pcwsp->func = func;
    4856           0 :         pcwsp->ctr = 1;
    4857             : }
    4858             : 
    4859           0 : static void pr_cont_work(bool comma, struct work_struct *work, struct pr_cont_work_struct *pcwsp)
    4860             : {
    4861           0 :         if (work->func == wq_barrier_func) {
    4862             :                 struct wq_barrier *barr;
    4863             : 
    4864           0 :                 barr = container_of(work, struct wq_barrier, work);
    4865             : 
    4866           0 :                 pr_cont_work_flush(comma, (work_func_t)-1, pcwsp);
    4867           0 :                 pr_cont("%s BAR(%d)", comma ? "," : "",
    4868             :                         task_pid_nr(barr->task));
    4869             :         } else {
    4870           0 :                 if (!comma)
    4871           0 :                         pr_cont_work_flush(comma, (work_func_t)-1, pcwsp);
    4872           0 :                 pr_cont_work_flush(comma, work->func, pcwsp);
    4873             :         }
    4874           0 : }
    4875             : 
    4876           0 : static void show_pwq(struct pool_workqueue *pwq)
    4877             : {
    4878           0 :         struct pr_cont_work_struct pcws = { .ctr = 0, };
    4879           0 :         struct worker_pool *pool = pwq->pool;
    4880             :         struct work_struct *work;
    4881             :         struct worker *worker;
    4882           0 :         bool has_in_flight = false, has_pending = false;
    4883             :         int bkt;
    4884             : 
    4885           0 :         pr_info("  pwq %d:", pool->id);
    4886           0 :         pr_cont_pool_info(pool);
    4887             : 
    4888           0 :         pr_cont(" active=%d/%d refcnt=%d%s\n",
    4889             :                 pwq->nr_active, pwq->max_active, pwq->refcnt,
    4890             :                 !list_empty(&pwq->mayday_node) ? " MAYDAY" : "");
    4891             : 
    4892           0 :         hash_for_each(pool->busy_hash, bkt, worker, hentry) {
    4893           0 :                 if (worker->current_pwq == pwq) {
    4894             :                         has_in_flight = true;
    4895             :                         break;
    4896             :                 }
    4897             :         }
    4898           0 :         if (has_in_flight) {
    4899           0 :                 bool comma = false;
    4900             : 
    4901           0 :                 pr_info("    in-flight:");
    4902           0 :                 hash_for_each(pool->busy_hash, bkt, worker, hentry) {
    4903           0 :                         if (worker->current_pwq != pwq)
    4904           0 :                                 continue;
    4905             : 
    4906           0 :                         pr_cont("%s %d%s:%ps", comma ? "," : "",
    4907             :                                 task_pid_nr(worker->task),
    4908             :                                 worker->rescue_wq ? "(RESCUER)" : "",
    4909             :                                 worker->current_func);
    4910           0 :                         list_for_each_entry(work, &worker->scheduled, entry)
    4911           0 :                                 pr_cont_work(false, work, &pcws);
    4912           0 :                         pr_cont_work_flush(comma, (work_func_t)-1L, &pcws);
    4913           0 :                         comma = true;
    4914             :                 }
    4915           0 :                 pr_cont("\n");
    4916             :         }
    4917             : 
    4918           0 :         list_for_each_entry(work, &pool->worklist, entry) {
    4919           0 :                 if (get_work_pwq(work) == pwq) {
    4920             :                         has_pending = true;
    4921             :                         break;
    4922             :                 }
    4923             :         }
    4924           0 :         if (has_pending) {
    4925           0 :                 bool comma = false;
    4926             : 
    4927           0 :                 pr_info("    pending:");
    4928           0 :                 list_for_each_entry(work, &pool->worklist, entry) {
    4929           0 :                         if (get_work_pwq(work) != pwq)
    4930           0 :                                 continue;
    4931             : 
    4932           0 :                         pr_cont_work(comma, work, &pcws);
    4933           0 :                         comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
    4934             :                 }
    4935           0 :                 pr_cont_work_flush(comma, (work_func_t)-1L, &pcws);
    4936           0 :                 pr_cont("\n");
    4937             :         }
    4938             : 
    4939           0 :         if (!list_empty(&pwq->inactive_works)) {
    4940           0 :                 bool comma = false;
    4941             : 
    4942           0 :                 pr_info("    inactive:");
    4943           0 :                 list_for_each_entry(work, &pwq->inactive_works, entry) {
    4944           0 :                         pr_cont_work(comma, work, &pcws);
    4945           0 :                         comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
    4946             :                 }
    4947           0 :                 pr_cont_work_flush(comma, (work_func_t)-1L, &pcws);
    4948           0 :                 pr_cont("\n");
    4949             :         }
    4950           0 : }
    4951             : 
    4952             : /**
    4953             :  * show_one_workqueue - dump state of specified workqueue
    4954             :  * @wq: workqueue whose state will be printed
    4955             :  */
    4956           0 : void show_one_workqueue(struct workqueue_struct *wq)
    4957             : {
    4958             :         struct pool_workqueue *pwq;
    4959           0 :         bool idle = true;
    4960             :         unsigned long flags;
    4961             : 
    4962           0 :         for_each_pwq(pwq, wq) {
    4963           0 :                 if (pwq->nr_active || !list_empty(&pwq->inactive_works)) {
    4964             :                         idle = false;
    4965             :                         break;
    4966             :                 }
    4967             :         }
    4968           0 :         if (idle) /* Nothing to print for idle workqueue */
    4969             :                 return;
    4970             : 
    4971           0 :         pr_info("workqueue %s: flags=0x%x\n", wq->name, wq->flags);
    4972             : 
    4973           0 :         for_each_pwq(pwq, wq) {
    4974           0 :                 raw_spin_lock_irqsave(&pwq->pool->lock, flags);
    4975           0 :                 if (pwq->nr_active || !list_empty(&pwq->inactive_works)) {
    4976             :                         /*
    4977             :                          * Defer printing to avoid deadlocks in console
    4978             :                          * drivers that queue work while holding locks
    4979             :                          * also taken in their write paths.
    4980             :                          */
    4981           0 :                         printk_deferred_enter();
    4982           0 :                         show_pwq(pwq);
    4983           0 :                         printk_deferred_exit();
    4984             :                 }
    4985           0 :                 raw_spin_unlock_irqrestore(&pwq->pool->lock, flags);
    4986             :                 /*
    4987             :                  * We could be printing a lot from atomic context, e.g.
    4988             :                  * sysrq-t -> show_all_workqueues(). Avoid triggering
    4989             :                  * hard lockup.
    4990             :                  */
    4991             :                 touch_nmi_watchdog();
    4992             :         }
    4993             : 
    4994             : }
    4995             : 
    4996             : /**
    4997             :  * show_one_worker_pool - dump state of specified worker pool
    4998             :  * @pool: worker pool whose state will be printed
    4999             :  */
    5000           0 : static void show_one_worker_pool(struct worker_pool *pool)
    5001             : {
    5002             :         struct worker *worker;
    5003           0 :         bool first = true;
    5004             :         unsigned long flags;
    5005             : 
    5006           0 :         raw_spin_lock_irqsave(&pool->lock, flags);
    5007           0 :         if (pool->nr_workers == pool->nr_idle)
    5008             :                 goto next_pool;
    5009             :         /*
    5010             :          * Defer printing to avoid deadlocks in console drivers that
    5011             :          * queue work while holding locks also taken in their write
    5012             :          * paths.
    5013             :          */
    5014           0 :         printk_deferred_enter();
    5015           0 :         pr_info("pool %d:", pool->id);
    5016           0 :         pr_cont_pool_info(pool);
    5017           0 :         pr_cont(" hung=%us workers=%d",
    5018             :                 jiffies_to_msecs(jiffies - pool->watchdog_ts) / 1000,
    5019             :                 pool->nr_workers);
    5020           0 :         if (pool->manager)
    5021           0 :                 pr_cont(" manager: %d",
    5022             :                         task_pid_nr(pool->manager->task));
    5023           0 :         list_for_each_entry(worker, &pool->idle_list, entry) {
    5024           0 :                 pr_cont(" %s%d", first ? "idle: " : "",
    5025             :                         task_pid_nr(worker->task));
    5026           0 :                 first = false;
    5027             :         }
    5028           0 :         pr_cont("\n");
    5029           0 :         printk_deferred_exit();
    5030             : next_pool:
    5031           0 :         raw_spin_unlock_irqrestore(&pool->lock, flags);
    5032             :         /*
    5033             :          * We could be printing a lot from atomic context, e.g.
    5034             :          * sysrq-t -> show_all_workqueues(). Avoid triggering
    5035             :          * hard lockup.
    5036             :          */
    5037             :         touch_nmi_watchdog();
    5038             : 
    5039           0 : }
    5040             : 
    5041             : /**
    5042             :  * show_all_workqueues - dump workqueue state
    5043             :  *
    5044             :  * Called from a sysrq handler or try_to_freeze_tasks() and prints out
    5045             :  * all busy workqueues and pools.
    5046             :  */
    5047           0 : void show_all_workqueues(void)
    5048             : {
    5049             :         struct workqueue_struct *wq;
    5050             :         struct worker_pool *pool;
    5051             :         int pi;
    5052             : 
    5053             :         rcu_read_lock();
    5054             : 
    5055           0 :         pr_info("Showing busy workqueues and worker pools:\n");
    5056             : 
    5057           0 :         list_for_each_entry_rcu(wq, &workqueues, list)
    5058           0 :                 show_one_workqueue(wq);
    5059             : 
    5060           0 :         for_each_pool(pool, pi)
    5061           0 :                 show_one_worker_pool(pool);
    5062             : 
    5063             :         rcu_read_unlock();
    5064           0 : }
    5065             : 
    5066             : /* used to show worker information through /proc/PID/{comm,stat,status} */
    5067           0 : void wq_worker_comm(char *buf, size_t size, struct task_struct *task)
    5068             : {
    5069             :         int off;
    5070             : 
    5071             :         /* always show the actual comm */
    5072           0 :         off = strscpy(buf, task->comm, size);
    5073           0 :         if (off < 0)
    5074             :                 return;
    5075             : 
    5076             :         /* stabilize PF_WQ_WORKER and worker pool association */
    5077           0 :         mutex_lock(&wq_pool_attach_mutex);
    5078             : 
    5079           0 :         if (task->flags & PF_WQ_WORKER) {
    5080           0 :                 struct worker *worker = kthread_data(task);
    5081           0 :                 struct worker_pool *pool = worker->pool;
    5082             : 
    5083           0 :                 if (pool) {
    5084           0 :                         raw_spin_lock_irq(&pool->lock);
    5085             :                         /*
    5086             :                          * ->desc tracks information (wq name or
    5087             :                          * set_worker_desc()) for the latest execution.  If
    5088             :                          * current, prepend '+', otherwise '-'.
    5089             :                          */
    5090           0 :                         if (worker->desc[0] != '\0') {
    5091           0 :                                 if (worker->current_work)
    5092           0 :                                         scnprintf(buf + off, size - off, "+%s",
    5093           0 :                                                   worker->desc);
    5094             :                                 else
    5095           0 :                                         scnprintf(buf + off, size - off, "-%s",
    5096           0 :                                                   worker->desc);
    5097             :                         }
    5098           0 :                         raw_spin_unlock_irq(&pool->lock);
    5099             :                 }
    5100             :         }
    5101             : 
    5102           0 :         mutex_unlock(&wq_pool_attach_mutex);
    5103             : }
    5104             : 
    5105             : #ifdef CONFIG_SMP
    5106             : 
    5107             : /*
    5108             :  * CPU hotplug.
    5109             :  *
    5110             :  * There are two challenges in supporting CPU hotplug.  Firstly, there
    5111             :  * are a lot of assumptions on strong associations among work, pwq and
    5112             :  * pool which make migrating pending and scheduled works very
    5113             :  * difficult to implement without impacting hot paths.  Secondly,
    5114             :  * worker pools serve mix of short, long and very long running works making
    5115             :  * blocked draining impractical.
    5116             :  *
    5117             :  * This is solved by allowing the pools to be disassociated from the CPU
    5118             :  * running as an unbound one and allowing it to be reattached later if the
    5119             :  * cpu comes back online.
    5120             :  */
    5121             : 
    5122             : static void unbind_workers(int cpu)
    5123             : {
    5124             :         struct worker_pool *pool;
    5125             :         struct worker *worker;
    5126             : 
    5127             :         for_each_cpu_worker_pool(pool, cpu) {
    5128             :                 mutex_lock(&wq_pool_attach_mutex);
    5129             :                 raw_spin_lock_irq(&pool->lock);
    5130             : 
    5131             :                 /*
    5132             :                  * We've blocked all attach/detach operations. Make all workers
    5133             :                  * unbound and set DISASSOCIATED.  Before this, all workers
    5134             :                  * must be on the cpu.  After this, they may become diasporas.
    5135             :                  * And the preemption disabled section in their sched callbacks
    5136             :                  * are guaranteed to see WORKER_UNBOUND since the code here
    5137             :                  * is on the same cpu.
    5138             :                  */
    5139             :                 for_each_pool_worker(worker, pool)
    5140             :                         worker->flags |= WORKER_UNBOUND;
    5141             : 
    5142             :                 pool->flags |= POOL_DISASSOCIATED;
    5143             : 
    5144             :                 /*
    5145             :                  * The handling of nr_running in sched callbacks are disabled
    5146             :                  * now.  Zap nr_running.  After this, nr_running stays zero and
    5147             :                  * need_more_worker() and keep_working() are always true as
    5148             :                  * long as the worklist is not empty.  This pool now behaves as
    5149             :                  * an unbound (in terms of concurrency management) pool which
    5150             :                  * are served by workers tied to the pool.
    5151             :                  */
    5152             :                 pool->nr_running = 0;
    5153             : 
    5154             :                 /*
    5155             :                  * With concurrency management just turned off, a busy
    5156             :                  * worker blocking could lead to lengthy stalls.  Kick off
    5157             :                  * unbound chain execution of currently pending work items.
    5158             :                  */
    5159             :                 wake_up_worker(pool);
    5160             : 
    5161             :                 raw_spin_unlock_irq(&pool->lock);
    5162             : 
    5163             :                 for_each_pool_worker(worker, pool)
    5164             :                         unbind_worker(worker);
    5165             : 
    5166             :                 mutex_unlock(&wq_pool_attach_mutex);
    5167             :         }
    5168             : }
    5169             : 
    5170             : /**
    5171             :  * rebind_workers - rebind all workers of a pool to the associated CPU
    5172             :  * @pool: pool of interest
    5173             :  *
    5174             :  * @pool->cpu is coming online.  Rebind all workers to the CPU.
    5175             :  */
    5176             : static void rebind_workers(struct worker_pool *pool)
    5177             : {
    5178             :         struct worker *worker;
    5179             : 
    5180             :         lockdep_assert_held(&wq_pool_attach_mutex);
    5181             : 
    5182             :         /*
    5183             :          * Restore CPU affinity of all workers.  As all idle workers should
    5184             :          * be on the run-queue of the associated CPU before any local
    5185             :          * wake-ups for concurrency management happen, restore CPU affinity
    5186             :          * of all workers first and then clear UNBOUND.  As we're called
    5187             :          * from CPU_ONLINE, the following shouldn't fail.
    5188             :          */
    5189             :         for_each_pool_worker(worker, pool) {
    5190             :                 kthread_set_per_cpu(worker->task, pool->cpu);
    5191             :                 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
    5192             :                                                   pool->attrs->cpumask) < 0);
    5193             :         }
    5194             : 
    5195             :         raw_spin_lock_irq(&pool->lock);
    5196             : 
    5197             :         pool->flags &= ~POOL_DISASSOCIATED;
    5198             : 
    5199             :         for_each_pool_worker(worker, pool) {
    5200             :                 unsigned int worker_flags = worker->flags;
    5201             : 
    5202             :                 /*
    5203             :                  * We want to clear UNBOUND but can't directly call
    5204             :                  * worker_clr_flags() or adjust nr_running.  Atomically
    5205             :                  * replace UNBOUND with another NOT_RUNNING flag REBOUND.
    5206             :                  * @worker will clear REBOUND using worker_clr_flags() when
    5207             :                  * it initiates the next execution cycle thus restoring
    5208             :                  * concurrency management.  Note that when or whether
    5209             :                  * @worker clears REBOUND doesn't affect correctness.
    5210             :                  *
    5211             :                  * WRITE_ONCE() is necessary because @worker->flags may be
    5212             :                  * tested without holding any lock in
    5213             :                  * wq_worker_running().  Without it, NOT_RUNNING test may
    5214             :                  * fail incorrectly leading to premature concurrency
    5215             :                  * management operations.
    5216             :                  */
    5217             :                 WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
    5218             :                 worker_flags |= WORKER_REBOUND;
    5219             :                 worker_flags &= ~WORKER_UNBOUND;
    5220             :                 WRITE_ONCE(worker->flags, worker_flags);
    5221             :         }
    5222             : 
    5223             :         raw_spin_unlock_irq(&pool->lock);
    5224             : }
    5225             : 
    5226             : /**
    5227             :  * restore_unbound_workers_cpumask - restore cpumask of unbound workers
    5228             :  * @pool: unbound pool of interest
    5229             :  * @cpu: the CPU which is coming up
    5230             :  *
    5231             :  * An unbound pool may end up with a cpumask which doesn't have any online
    5232             :  * CPUs.  When a worker of such pool get scheduled, the scheduler resets
    5233             :  * its cpus_allowed.  If @cpu is in @pool's cpumask which didn't have any
    5234             :  * online CPU before, cpus_allowed of all its workers should be restored.
    5235             :  */
    5236             : static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
    5237             : {
    5238             :         static cpumask_t cpumask;
    5239             :         struct worker *worker;
    5240             : 
    5241             :         lockdep_assert_held(&wq_pool_attach_mutex);
    5242             : 
    5243             :         /* is @cpu allowed for @pool? */
    5244             :         if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
    5245             :                 return;
    5246             : 
    5247             :         cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
    5248             : 
    5249             :         /* as we're called from CPU_ONLINE, the following shouldn't fail */
    5250             :         for_each_pool_worker(worker, pool)
    5251             :                 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, &cpumask) < 0);
    5252             : }
    5253             : 
    5254             : int workqueue_prepare_cpu(unsigned int cpu)
    5255             : {
    5256             :         struct worker_pool *pool;
    5257             : 
    5258             :         for_each_cpu_worker_pool(pool, cpu) {
    5259             :                 if (pool->nr_workers)
    5260             :                         continue;
    5261             :                 if (!create_worker(pool))
    5262             :                         return -ENOMEM;
    5263             :         }
    5264             :         return 0;
    5265             : }
    5266             : 
    5267             : int workqueue_online_cpu(unsigned int cpu)
    5268             : {
    5269             :         struct worker_pool *pool;
    5270             :         struct workqueue_struct *wq;
    5271             :         int pi;
    5272             : 
    5273             :         mutex_lock(&wq_pool_mutex);
    5274             : 
    5275             :         for_each_pool(pool, pi) {
    5276             :                 mutex_lock(&wq_pool_attach_mutex);
    5277             : 
    5278             :                 if (pool->cpu == cpu)
    5279             :                         rebind_workers(pool);
    5280             :                 else if (pool->cpu < 0)
    5281             :                         restore_unbound_workers_cpumask(pool, cpu);
    5282             : 
    5283             :                 mutex_unlock(&wq_pool_attach_mutex);
    5284             :         }
    5285             : 
    5286             :         /* update NUMA affinity of unbound workqueues */
    5287             :         list_for_each_entry(wq, &workqueues, list)
    5288             :                 wq_update_unbound_numa(wq, cpu, true);
    5289             : 
    5290             :         mutex_unlock(&wq_pool_mutex);
    5291             :         return 0;
    5292             : }
    5293             : 
    5294             : int workqueue_offline_cpu(unsigned int cpu)
    5295             : {
    5296             :         struct workqueue_struct *wq;
    5297             : 
    5298             :         /* unbinding per-cpu workers should happen on the local CPU */
    5299             :         if (WARN_ON(cpu != smp_processor_id()))
    5300             :                 return -1;
    5301             : 
    5302             :         unbind_workers(cpu);
    5303             : 
    5304             :         /* update NUMA affinity of unbound workqueues */
    5305             :         mutex_lock(&wq_pool_mutex);
    5306             :         list_for_each_entry(wq, &workqueues, list)
    5307             :                 wq_update_unbound_numa(wq, cpu, false);
    5308             :         mutex_unlock(&wq_pool_mutex);
    5309             : 
    5310             :         return 0;
    5311             : }
    5312             : 
    5313             : struct work_for_cpu {
    5314             :         struct work_struct work;
    5315             :         long (*fn)(void *);
    5316             :         void *arg;
    5317             :         long ret;
    5318             : };
    5319             : 
    5320             : static void work_for_cpu_fn(struct work_struct *work)
    5321             : {
    5322             :         struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
    5323             : 
    5324             :         wfc->ret = wfc->fn(wfc->arg);
    5325             : }
    5326             : 
    5327             : /**
    5328             :  * work_on_cpu - run a function in thread context on a particular cpu
    5329             :  * @cpu: the cpu to run on
    5330             :  * @fn: the function to run
    5331             :  * @arg: the function arg
    5332             :  *
    5333             :  * It is up to the caller to ensure that the cpu doesn't go offline.
    5334             :  * The caller must not hold any locks which would prevent @fn from completing.
    5335             :  *
    5336             :  * Return: The value @fn returns.
    5337             :  */
    5338             : long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
    5339             : {
    5340             :         struct work_for_cpu wfc = { .fn = fn, .arg = arg };
    5341             : 
    5342             :         INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
    5343             :         schedule_work_on(cpu, &wfc.work);
    5344             :         flush_work(&wfc.work);
    5345             :         destroy_work_on_stack(&wfc.work);
    5346             :         return wfc.ret;
    5347             : }
    5348             : EXPORT_SYMBOL_GPL(work_on_cpu);
    5349             : 
    5350             : /**
    5351             :  * work_on_cpu_safe - run a function in thread context on a particular cpu
    5352             :  * @cpu: the cpu to run on
    5353             :  * @fn:  the function to run
    5354             :  * @arg: the function argument
    5355             :  *
    5356             :  * Disables CPU hotplug and calls work_on_cpu(). The caller must not hold
    5357             :  * any locks which would prevent @fn from completing.
    5358             :  *
    5359             :  * Return: The value @fn returns.
    5360             :  */
    5361             : long work_on_cpu_safe(int cpu, long (*fn)(void *), void *arg)
    5362             : {
    5363             :         long ret = -ENODEV;
    5364             : 
    5365             :         cpus_read_lock();
    5366             :         if (cpu_online(cpu))
    5367             :                 ret = work_on_cpu(cpu, fn, arg);
    5368             :         cpus_read_unlock();
    5369             :         return ret;
    5370             : }
    5371             : EXPORT_SYMBOL_GPL(work_on_cpu_safe);
    5372             : #endif /* CONFIG_SMP */
    5373             : 
    5374             : #ifdef CONFIG_FREEZER
    5375             : 
    5376             : /**
    5377             :  * freeze_workqueues_begin - begin freezing workqueues
    5378             :  *
    5379             :  * Start freezing workqueues.  After this function returns, all freezable
    5380             :  * workqueues will queue new works to their inactive_works list instead of
    5381             :  * pool->worklist.
    5382             :  *
    5383             :  * CONTEXT:
    5384             :  * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
    5385             :  */
    5386           0 : void freeze_workqueues_begin(void)
    5387             : {
    5388             :         struct workqueue_struct *wq;
    5389             :         struct pool_workqueue *pwq;
    5390             : 
    5391           0 :         mutex_lock(&wq_pool_mutex);
    5392             : 
    5393           0 :         WARN_ON_ONCE(workqueue_freezing);
    5394           0 :         workqueue_freezing = true;
    5395             : 
    5396           0 :         list_for_each_entry(wq, &workqueues, list) {
    5397           0 :                 mutex_lock(&wq->mutex);
    5398           0 :                 for_each_pwq(pwq, wq)
    5399           0 :                         pwq_adjust_max_active(pwq);
    5400           0 :                 mutex_unlock(&wq->mutex);
    5401             :         }
    5402             : 
    5403           0 :         mutex_unlock(&wq_pool_mutex);
    5404           0 : }
    5405             : 
    5406             : /**
    5407             :  * freeze_workqueues_busy - are freezable workqueues still busy?
    5408             :  *
    5409             :  * Check whether freezing is complete.  This function must be called
    5410             :  * between freeze_workqueues_begin() and thaw_workqueues().
    5411             :  *
    5412             :  * CONTEXT:
    5413             :  * Grabs and releases wq_pool_mutex.
    5414             :  *
    5415             :  * Return:
    5416             :  * %true if some freezable workqueues are still busy.  %false if freezing
    5417             :  * is complete.
    5418             :  */
    5419           0 : bool freeze_workqueues_busy(void)
    5420             : {
    5421           0 :         bool busy = false;
    5422             :         struct workqueue_struct *wq;
    5423             :         struct pool_workqueue *pwq;
    5424             : 
    5425           0 :         mutex_lock(&wq_pool_mutex);
    5426             : 
    5427           0 :         WARN_ON_ONCE(!workqueue_freezing);
    5428             : 
    5429           0 :         list_for_each_entry(wq, &workqueues, list) {
    5430           0 :                 if (!(wq->flags & WQ_FREEZABLE))
    5431           0 :                         continue;
    5432             :                 /*
    5433             :                  * nr_active is monotonically decreasing.  It's safe
    5434             :                  * to peek without lock.
    5435             :                  */
    5436             :                 rcu_read_lock();
    5437           0 :                 for_each_pwq(pwq, wq) {
    5438           0 :                         WARN_ON_ONCE(pwq->nr_active < 0);
    5439           0 :                         if (pwq->nr_active) {
    5440           0 :                                 busy = true;
    5441             :                                 rcu_read_unlock();
    5442             :                                 goto out_unlock;
    5443             :                         }
    5444             :                 }
    5445             :                 rcu_read_unlock();
    5446             :         }
    5447             : out_unlock:
    5448           0 :         mutex_unlock(&wq_pool_mutex);
    5449           0 :         return busy;
    5450             : }
    5451             : 
    5452             : /**
    5453             :  * thaw_workqueues - thaw workqueues
    5454             :  *
    5455             :  * Thaw workqueues.  Normal queueing is restored and all collected
    5456             :  * frozen works are transferred to their respective pool worklists.
    5457             :  *
    5458             :  * CONTEXT:
    5459             :  * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
    5460             :  */
    5461           0 : void thaw_workqueues(void)
    5462             : {
    5463             :         struct workqueue_struct *wq;
    5464             :         struct pool_workqueue *pwq;
    5465             : 
    5466           0 :         mutex_lock(&wq_pool_mutex);
    5467             : 
    5468           0 :         if (!workqueue_freezing)
    5469             :                 goto out_unlock;
    5470             : 
    5471           0 :         workqueue_freezing = false;
    5472             : 
    5473             :         /* restore max_active and repopulate worklist */
    5474           0 :         list_for_each_entry(wq, &workqueues, list) {
    5475           0 :                 mutex_lock(&wq->mutex);
    5476           0 :                 for_each_pwq(pwq, wq)
    5477           0 :                         pwq_adjust_max_active(pwq);
    5478           0 :                 mutex_unlock(&wq->mutex);
    5479             :         }
    5480             : 
    5481             : out_unlock:
    5482           0 :         mutex_unlock(&wq_pool_mutex);
    5483           0 : }
    5484             : #endif /* CONFIG_FREEZER */
    5485             : 
    5486           0 : static int workqueue_apply_unbound_cpumask(const cpumask_var_t unbound_cpumask)
    5487             : {
    5488           0 :         LIST_HEAD(ctxs);
    5489           0 :         int ret = 0;
    5490             :         struct workqueue_struct *wq;
    5491             :         struct apply_wqattrs_ctx *ctx, *n;
    5492             : 
    5493             :         lockdep_assert_held(&wq_pool_mutex);
    5494             : 
    5495           0 :         list_for_each_entry(wq, &workqueues, list) {
    5496           0 :                 if (!(wq->flags & WQ_UNBOUND))
    5497           0 :                         continue;
    5498             :                 /* creating multiple pwqs breaks ordering guarantee */
    5499           0 :                 if (wq->flags & __WQ_ORDERED)
    5500           0 :                         continue;
    5501             : 
    5502           0 :                 ctx = apply_wqattrs_prepare(wq, wq->unbound_attrs, unbound_cpumask);
    5503           0 :                 if (!ctx) {
    5504             :                         ret = -ENOMEM;
    5505             :                         break;
    5506             :                 }
    5507             : 
    5508           0 :                 list_add_tail(&ctx->list, &ctxs);
    5509             :         }
    5510             : 
    5511           0 :         list_for_each_entry_safe(ctx, n, &ctxs, list) {
    5512           0 :                 if (!ret)
    5513           0 :                         apply_wqattrs_commit(ctx);
    5514           0 :                 apply_wqattrs_cleanup(ctx);
    5515             :         }
    5516             : 
    5517           0 :         if (!ret) {
    5518           0 :                 mutex_lock(&wq_pool_attach_mutex);
    5519           0 :                 cpumask_copy(wq_unbound_cpumask, unbound_cpumask);
    5520           0 :                 mutex_unlock(&wq_pool_attach_mutex);
    5521             :         }
    5522           0 :         return ret;
    5523             : }
    5524             : 
    5525             : /**
    5526             :  *  workqueue_set_unbound_cpumask - Set the low-level unbound cpumask
    5527             :  *  @cpumask: the cpumask to set
    5528             :  *
    5529             :  *  The low-level workqueues cpumask is a global cpumask that limits
    5530             :  *  the affinity of all unbound workqueues.  This function check the @cpumask
    5531             :  *  and apply it to all unbound workqueues and updates all pwqs of them.
    5532             :  *
    5533             :  *  Return:     0       - Success
    5534             :  *              -EINVAL - Invalid @cpumask
    5535             :  *              -ENOMEM - Failed to allocate memory for attrs or pwqs.
    5536             :  */
    5537           0 : int workqueue_set_unbound_cpumask(cpumask_var_t cpumask)
    5538             : {
    5539           0 :         int ret = -EINVAL;
    5540             : 
    5541             :         /*
    5542             :          * Not excluding isolated cpus on purpose.
    5543             :          * If the user wishes to include them, we allow that.
    5544             :          */
    5545           0 :         cpumask_and(cpumask, cpumask, cpu_possible_mask);
    5546           0 :         if (!cpumask_empty(cpumask)) {
    5547           0 :                 apply_wqattrs_lock();
    5548           0 :                 if (cpumask_equal(cpumask, wq_unbound_cpumask)) {
    5549             :                         ret = 0;
    5550             :                         goto out_unlock;
    5551             :                 }
    5552             : 
    5553           0 :                 ret = workqueue_apply_unbound_cpumask(cpumask);
    5554             : 
    5555             : out_unlock:
    5556             :                 apply_wqattrs_unlock();
    5557             :         }
    5558             : 
    5559           0 :         return ret;
    5560             : }
    5561             : 
    5562             : #ifdef CONFIG_SYSFS
    5563             : /*
    5564             :  * Workqueues with WQ_SYSFS flag set is visible to userland via
    5565             :  * /sys/bus/workqueue/devices/WQ_NAME.  All visible workqueues have the
    5566             :  * following attributes.
    5567             :  *
    5568             :  *  per_cpu     RO bool : whether the workqueue is per-cpu or unbound
    5569             :  *  max_active  RW int  : maximum number of in-flight work items
    5570             :  *
    5571             :  * Unbound workqueues have the following extra attributes.
    5572             :  *
    5573             :  *  pool_ids    RO int  : the associated pool IDs for each node
    5574             :  *  nice        RW int  : nice value of the workers
    5575             :  *  cpumask     RW mask : bitmask of allowed CPUs for the workers
    5576             :  *  numa        RW bool : whether enable NUMA affinity
    5577             :  */
    5578             : struct wq_device {
    5579             :         struct workqueue_struct         *wq;
    5580             :         struct device                   dev;
    5581             : };
    5582             : 
    5583             : static struct workqueue_struct *dev_to_wq(struct device *dev)
    5584             : {
    5585           0 :         struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
    5586             : 
    5587           0 :         return wq_dev->wq;
    5588             : }
    5589             : 
    5590           0 : static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr,
    5591             :                             char *buf)
    5592             : {
    5593           0 :         struct workqueue_struct *wq = dev_to_wq(dev);
    5594             : 
    5595           0 :         return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
    5596             : }
    5597             : static DEVICE_ATTR_RO(per_cpu);
    5598             : 
    5599           0 : static ssize_t max_active_show(struct device *dev,
    5600             :                                struct device_attribute *attr, char *buf)
    5601             : {
    5602           0 :         struct workqueue_struct *wq = dev_to_wq(dev);
    5603             : 
    5604           0 :         return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
    5605             : }
    5606             : 
    5607           0 : static ssize_t max_active_store(struct device *dev,
    5608             :                                 struct device_attribute *attr, const char *buf,
    5609             :                                 size_t count)
    5610             : {
    5611           0 :         struct workqueue_struct *wq = dev_to_wq(dev);
    5612             :         int val;
    5613             : 
    5614           0 :         if (sscanf(buf, "%d", &val) != 1 || val <= 0)
    5615             :                 return -EINVAL;
    5616             : 
    5617           0 :         workqueue_set_max_active(wq, val);
    5618           0 :         return count;
    5619             : }
    5620             : static DEVICE_ATTR_RW(max_active);
    5621             : 
    5622             : static struct attribute *wq_sysfs_attrs[] = {
    5623             :         &dev_attr_per_cpu.attr,
    5624             :         &dev_attr_max_active.attr,
    5625             :         NULL,
    5626             : };
    5627             : ATTRIBUTE_GROUPS(wq_sysfs);
    5628             : 
    5629           0 : static ssize_t wq_pool_ids_show(struct device *dev,
    5630             :                                 struct device_attribute *attr, char *buf)
    5631             : {
    5632           0 :         struct workqueue_struct *wq = dev_to_wq(dev);
    5633           0 :         const char *delim = "";
    5634           0 :         int node, written = 0;
    5635             : 
    5636             :         cpus_read_lock();
    5637             :         rcu_read_lock();
    5638           0 :         for_each_node(node) {
    5639           0 :                 written += scnprintf(buf + written, PAGE_SIZE - written,
    5640             :                                      "%s%d:%d", delim, node,
    5641           0 :                                      unbound_pwq_by_node(wq, node)->pool->id);
    5642           0 :                 delim = " ";
    5643             :         }
    5644           0 :         written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
    5645             :         rcu_read_unlock();
    5646             :         cpus_read_unlock();
    5647             : 
    5648           0 :         return written;
    5649             : }
    5650             : 
    5651           0 : static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
    5652             :                             char *buf)
    5653             : {
    5654           0 :         struct workqueue_struct *wq = dev_to_wq(dev);
    5655             :         int written;
    5656             : 
    5657           0 :         mutex_lock(&wq->mutex);
    5658           0 :         written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
    5659           0 :         mutex_unlock(&wq->mutex);
    5660             : 
    5661           0 :         return written;
    5662             : }
    5663             : 
    5664             : /* prepare workqueue_attrs for sysfs store operations */
    5665           0 : static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
    5666             : {
    5667             :         struct workqueue_attrs *attrs;
    5668             : 
    5669             :         lockdep_assert_held(&wq_pool_mutex);
    5670             : 
    5671           0 :         attrs = alloc_workqueue_attrs();
    5672           0 :         if (!attrs)
    5673             :                 return NULL;
    5674             : 
    5675           0 :         copy_workqueue_attrs(attrs, wq->unbound_attrs);
    5676           0 :         return attrs;
    5677             : }
    5678             : 
    5679           0 : static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
    5680             :                              const char *buf, size_t count)
    5681             : {
    5682           0 :         struct workqueue_struct *wq = dev_to_wq(dev);
    5683             :         struct workqueue_attrs *attrs;
    5684           0 :         int ret = -ENOMEM;
    5685             : 
    5686             :         apply_wqattrs_lock();
    5687             : 
    5688           0 :         attrs = wq_sysfs_prep_attrs(wq);
    5689           0 :         if (!attrs)
    5690             :                 goto out_unlock;
    5691             : 
    5692           0 :         if (sscanf(buf, "%d", &attrs->nice) == 1 &&
    5693           0 :             attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE)
    5694           0 :                 ret = apply_workqueue_attrs_locked(wq, attrs);
    5695             :         else
    5696             :                 ret = -EINVAL;
    5697             : 
    5698             : out_unlock:
    5699           0 :         apply_wqattrs_unlock();
    5700           0 :         free_workqueue_attrs(attrs);
    5701           0 :         return ret ?: count;
    5702             : }
    5703             : 
    5704           0 : static ssize_t wq_cpumask_show(struct device *dev,
    5705             :                                struct device_attribute *attr, char *buf)
    5706             : {
    5707           0 :         struct workqueue_struct *wq = dev_to_wq(dev);
    5708             :         int written;
    5709             : 
    5710           0 :         mutex_lock(&wq->mutex);
    5711           0 :         written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
    5712           0 :                             cpumask_pr_args(wq->unbound_attrs->cpumask));
    5713           0 :         mutex_unlock(&wq->mutex);
    5714           0 :         return written;
    5715             : }
    5716             : 
    5717           0 : static ssize_t wq_cpumask_store(struct device *dev,
    5718             :                                 struct device_attribute *attr,
    5719             :                                 const char *buf, size_t count)
    5720             : {
    5721           0 :         struct workqueue_struct *wq = dev_to_wq(dev);
    5722             :         struct workqueue_attrs *attrs;
    5723           0 :         int ret = -ENOMEM;
    5724             : 
    5725             :         apply_wqattrs_lock();
    5726             : 
    5727           0 :         attrs = wq_sysfs_prep_attrs(wq);
    5728           0 :         if (!attrs)
    5729             :                 goto out_unlock;
    5730             : 
    5731           0 :         ret = cpumask_parse(buf, attrs->cpumask);
    5732           0 :         if (!ret)
    5733           0 :                 ret = apply_workqueue_attrs_locked(wq, attrs);
    5734             : 
    5735             : out_unlock:
    5736           0 :         apply_wqattrs_unlock();
    5737           0 :         free_workqueue_attrs(attrs);
    5738           0 :         return ret ?: count;
    5739             : }
    5740             : 
    5741           0 : static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr,
    5742             :                             char *buf)
    5743             : {
    5744           0 :         struct workqueue_struct *wq = dev_to_wq(dev);
    5745             :         int written;
    5746             : 
    5747           0 :         mutex_lock(&wq->mutex);
    5748           0 :         written = scnprintf(buf, PAGE_SIZE, "%d\n",
    5749           0 :                             !wq->unbound_attrs->no_numa);
    5750           0 :         mutex_unlock(&wq->mutex);
    5751             : 
    5752           0 :         return written;
    5753             : }
    5754             : 
    5755           0 : static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr,
    5756             :                              const char *buf, size_t count)
    5757             : {
    5758           0 :         struct workqueue_struct *wq = dev_to_wq(dev);
    5759             :         struct workqueue_attrs *attrs;
    5760           0 :         int v, ret = -ENOMEM;
    5761             : 
    5762             :         apply_wqattrs_lock();
    5763             : 
    5764           0 :         attrs = wq_sysfs_prep_attrs(wq);
    5765           0 :         if (!attrs)
    5766             :                 goto out_unlock;
    5767             : 
    5768           0 :         ret = -EINVAL;
    5769           0 :         if (sscanf(buf, "%d", &v) == 1) {
    5770           0 :                 attrs->no_numa = !v;
    5771           0 :                 ret = apply_workqueue_attrs_locked(wq, attrs);
    5772             :         }
    5773             : 
    5774             : out_unlock:
    5775           0 :         apply_wqattrs_unlock();
    5776           0 :         free_workqueue_attrs(attrs);
    5777           0 :         return ret ?: count;
    5778             : }
    5779             : 
    5780             : static struct device_attribute wq_sysfs_unbound_attrs[] = {
    5781             :         __ATTR(pool_ids, 0444, wq_pool_ids_show, NULL),
    5782             :         __ATTR(nice, 0644, wq_nice_show, wq_nice_store),
    5783             :         __ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
    5784             :         __ATTR(numa, 0644, wq_numa_show, wq_numa_store),
    5785             :         __ATTR_NULL,
    5786             : };
    5787             : 
    5788             : static struct bus_type wq_subsys = {
    5789             :         .name                           = "workqueue",
    5790             :         .dev_groups                     = wq_sysfs_groups,
    5791             : };
    5792             : 
    5793           0 : static ssize_t wq_unbound_cpumask_show(struct device *dev,
    5794             :                 struct device_attribute *attr, char *buf)
    5795             : {
    5796             :         int written;
    5797             : 
    5798           0 :         mutex_lock(&wq_pool_mutex);
    5799           0 :         written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
    5800             :                             cpumask_pr_args(wq_unbound_cpumask));
    5801           0 :         mutex_unlock(&wq_pool_mutex);
    5802             : 
    5803           0 :         return written;
    5804             : }
    5805             : 
    5806           0 : static ssize_t wq_unbound_cpumask_store(struct device *dev,
    5807             :                 struct device_attribute *attr, const char *buf, size_t count)
    5808             : {
    5809             :         cpumask_var_t cpumask;
    5810             :         int ret;
    5811             : 
    5812           0 :         if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL))
    5813             :                 return -ENOMEM;
    5814             : 
    5815           0 :         ret = cpumask_parse(buf, cpumask);
    5816           0 :         if (!ret)
    5817           0 :                 ret = workqueue_set_unbound_cpumask(cpumask);
    5818             : 
    5819           0 :         free_cpumask_var(cpumask);
    5820           0 :         return ret ? ret : count;
    5821             : }
    5822             : 
    5823             : static struct device_attribute wq_sysfs_cpumask_attr =
    5824             :         __ATTR(cpumask, 0644, wq_unbound_cpumask_show,
    5825             :                wq_unbound_cpumask_store);
    5826             : 
    5827           1 : static int __init wq_sysfs_init(void)
    5828             : {
    5829             :         int err;
    5830             : 
    5831           1 :         err = subsys_virtual_register(&wq_subsys, NULL);
    5832           1 :         if (err)
    5833             :                 return err;
    5834             : 
    5835           1 :         return device_create_file(wq_subsys.dev_root, &wq_sysfs_cpumask_attr);
    5836             : }
    5837             : core_initcall(wq_sysfs_init);
    5838             : 
    5839           0 : static void wq_device_release(struct device *dev)
    5840             : {
    5841           0 :         struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
    5842             : 
    5843           0 :         kfree(wq_dev);
    5844           0 : }
    5845             : 
    5846             : /**
    5847             :  * workqueue_sysfs_register - make a workqueue visible in sysfs
    5848             :  * @wq: the workqueue to register
    5849             :  *
    5850             :  * Expose @wq in sysfs under /sys/bus/workqueue/devices.
    5851             :  * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
    5852             :  * which is the preferred method.
    5853             :  *
    5854             :  * Workqueue user should use this function directly iff it wants to apply
    5855             :  * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
    5856             :  * apply_workqueue_attrs() may race against userland updating the
    5857             :  * attributes.
    5858             :  *
    5859             :  * Return: 0 on success, -errno on failure.
    5860             :  */
    5861           1 : int workqueue_sysfs_register(struct workqueue_struct *wq)
    5862             : {
    5863             :         struct wq_device *wq_dev;
    5864             :         int ret;
    5865             : 
    5866             :         /*
    5867             :          * Adjusting max_active or creating new pwqs by applying
    5868             :          * attributes breaks ordering guarantee.  Disallow exposing ordered
    5869             :          * workqueues.
    5870             :          */
    5871           1 :         if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
    5872             :                 return -EINVAL;
    5873             : 
    5874           1 :         wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
    5875           1 :         if (!wq_dev)
    5876             :                 return -ENOMEM;
    5877             : 
    5878           1 :         wq_dev->wq = wq;
    5879           1 :         wq_dev->dev.bus = &wq_subsys;
    5880           1 :         wq_dev->dev.release = wq_device_release;
    5881           1 :         dev_set_name(&wq_dev->dev, "%s", wq->name);
    5882             : 
    5883             :         /*
    5884             :          * unbound_attrs are created separately.  Suppress uevent until
    5885             :          * everything is ready.
    5886             :          */
    5887           2 :         dev_set_uevent_suppress(&wq_dev->dev, true);
    5888             : 
    5889           1 :         ret = device_register(&wq_dev->dev);
    5890           1 :         if (ret) {
    5891           0 :                 put_device(&wq_dev->dev);
    5892           0 :                 wq->wq_dev = NULL;
    5893           0 :                 return ret;
    5894             :         }
    5895             : 
    5896           1 :         if (wq->flags & WQ_UNBOUND) {
    5897             :                 struct device_attribute *attr;
    5898             : 
    5899           4 :                 for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
    5900           4 :                         ret = device_create_file(&wq_dev->dev, attr);
    5901           4 :                         if (ret) {
    5902           0 :                                 device_unregister(&wq_dev->dev);
    5903           0 :                                 wq->wq_dev = NULL;
    5904           0 :                                 return ret;
    5905             :                         }
    5906             :                 }
    5907             :         }
    5908             : 
    5909           2 :         dev_set_uevent_suppress(&wq_dev->dev, false);
    5910           1 :         kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
    5911           1 :         return 0;
    5912             : }
    5913             : 
    5914             : /**
    5915             :  * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
    5916             :  * @wq: the workqueue to unregister
    5917             :  *
    5918             :  * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
    5919             :  */
    5920             : static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
    5921             : {
    5922           0 :         struct wq_device *wq_dev = wq->wq_dev;
    5923             : 
    5924           0 :         if (!wq->wq_dev)
    5925             :                 return;
    5926             : 
    5927           0 :         wq->wq_dev = NULL;
    5928           0 :         device_unregister(&wq_dev->dev);
    5929             : }
    5930             : #else   /* CONFIG_SYSFS */
    5931             : static void workqueue_sysfs_unregister(struct workqueue_struct *wq)     { }
    5932             : #endif  /* CONFIG_SYSFS */
    5933             : 
    5934             : /*
    5935             :  * Workqueue watchdog.
    5936             :  *
    5937             :  * Stall may be caused by various bugs - missing WQ_MEM_RECLAIM, illegal
    5938             :  * flush dependency, a concurrency managed work item which stays RUNNING
    5939             :  * indefinitely.  Workqueue stalls can be very difficult to debug as the
    5940             :  * usual warning mechanisms don't trigger and internal workqueue state is
    5941             :  * largely opaque.
    5942             :  *
    5943             :  * Workqueue watchdog monitors all worker pools periodically and dumps
    5944             :  * state if some pools failed to make forward progress for a while where
    5945             :  * forward progress is defined as the first item on ->worklist changing.
    5946             :  *
    5947             :  * This mechanism is controlled through the kernel parameter
    5948             :  * "workqueue.watchdog_thresh" which can be updated at runtime through the
    5949             :  * corresponding sysfs parameter file.
    5950             :  */
    5951             : #ifdef CONFIG_WQ_WATCHDOG
    5952             : 
    5953             : static unsigned long wq_watchdog_thresh = 30;
    5954             : static struct timer_list wq_watchdog_timer;
    5955             : 
    5956             : static unsigned long wq_watchdog_touched = INITIAL_JIFFIES;
    5957             : static DEFINE_PER_CPU(unsigned long, wq_watchdog_touched_cpu) = INITIAL_JIFFIES;
    5958             : 
    5959             : static void wq_watchdog_reset_touched(void)
    5960             : {
    5961             :         int cpu;
    5962             : 
    5963             :         wq_watchdog_touched = jiffies;
    5964             :         for_each_possible_cpu(cpu)
    5965             :                 per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
    5966             : }
    5967             : 
    5968             : static void wq_watchdog_timer_fn(struct timer_list *unused)
    5969             : {
    5970             :         unsigned long thresh = READ_ONCE(wq_watchdog_thresh) * HZ;
    5971             :         bool lockup_detected = false;
    5972             :         unsigned long now = jiffies;
    5973             :         struct worker_pool *pool;
    5974             :         int pi;
    5975             : 
    5976             :         if (!thresh)
    5977             :                 return;
    5978             : 
    5979             :         rcu_read_lock();
    5980             : 
    5981             :         for_each_pool(pool, pi) {
    5982             :                 unsigned long pool_ts, touched, ts;
    5983             : 
    5984             :                 if (list_empty(&pool->worklist))
    5985             :                         continue;
    5986             : 
    5987             :                 /*
    5988             :                  * If a virtual machine is stopped by the host it can look to
    5989             :                  * the watchdog like a stall.
    5990             :                  */
    5991             :                 kvm_check_and_clear_guest_paused();
    5992             : 
    5993             :                 /* get the latest of pool and touched timestamps */
    5994             :                 if (pool->cpu >= 0)
    5995             :                         touched = READ_ONCE(per_cpu(wq_watchdog_touched_cpu, pool->cpu));
    5996             :                 else
    5997             :                         touched = READ_ONCE(wq_watchdog_touched);
    5998             :                 pool_ts = READ_ONCE(pool->watchdog_ts);
    5999             : 
    6000             :                 if (time_after(pool_ts, touched))
    6001             :                         ts = pool_ts;
    6002             :                 else
    6003             :                         ts = touched;
    6004             : 
    6005             :                 /* did we stall? */
    6006             :                 if (time_after(now, ts + thresh)) {
    6007             :                         lockup_detected = true;
    6008             :                         pr_emerg("BUG: workqueue lockup - pool");
    6009             :                         pr_cont_pool_info(pool);
    6010             :                         pr_cont(" stuck for %us!\n",
    6011             :                                 jiffies_to_msecs(now - pool_ts) / 1000);
    6012             :                 }
    6013             :         }
    6014             : 
    6015             :         rcu_read_unlock();
    6016             : 
    6017             :         if (lockup_detected)
    6018             :                 show_all_workqueues();
    6019             : 
    6020             :         wq_watchdog_reset_touched();
    6021             :         mod_timer(&wq_watchdog_timer, jiffies + thresh);
    6022             : }
    6023             : 
    6024             : notrace void wq_watchdog_touch(int cpu)
    6025             : {
    6026             :         if (cpu >= 0)
    6027             :                 per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
    6028             : 
    6029             :         wq_watchdog_touched = jiffies;
    6030             : }
    6031             : 
    6032             : static void wq_watchdog_set_thresh(unsigned long thresh)
    6033             : {
    6034             :         wq_watchdog_thresh = 0;
    6035             :         del_timer_sync(&wq_watchdog_timer);
    6036             : 
    6037             :         if (thresh) {
    6038             :                 wq_watchdog_thresh = thresh;
    6039             :                 wq_watchdog_reset_touched();
    6040             :                 mod_timer(&wq_watchdog_timer, jiffies + thresh * HZ);
    6041             :         }
    6042             : }
    6043             : 
    6044             : static int wq_watchdog_param_set_thresh(const char *val,
    6045             :                                         const struct kernel_param *kp)
    6046             : {
    6047             :         unsigned long thresh;
    6048             :         int ret;
    6049             : 
    6050             :         ret = kstrtoul(val, 0, &thresh);
    6051             :         if (ret)
    6052             :                 return ret;
    6053             : 
    6054             :         if (system_wq)
    6055             :                 wq_watchdog_set_thresh(thresh);
    6056             :         else
    6057             :                 wq_watchdog_thresh = thresh;
    6058             : 
    6059             :         return 0;
    6060             : }
    6061             : 
    6062             : static const struct kernel_param_ops wq_watchdog_thresh_ops = {
    6063             :         .set    = wq_watchdog_param_set_thresh,
    6064             :         .get    = param_get_ulong,
    6065             : };
    6066             : 
    6067             : module_param_cb(watchdog_thresh, &wq_watchdog_thresh_ops, &wq_watchdog_thresh,
    6068             :                 0644);
    6069             : 
    6070             : static void wq_watchdog_init(void)
    6071             : {
    6072             :         timer_setup(&wq_watchdog_timer, wq_watchdog_timer_fn, TIMER_DEFERRABLE);
    6073             :         wq_watchdog_set_thresh(wq_watchdog_thresh);
    6074             : }
    6075             : 
    6076             : #else   /* CONFIG_WQ_WATCHDOG */
    6077             : 
    6078             : static inline void wq_watchdog_init(void) { }
    6079             : 
    6080             : #endif  /* CONFIG_WQ_WATCHDOG */
    6081             : 
    6082             : static void __init wq_numa_init(void)
    6083             : {
    6084             :         cpumask_var_t *tbl;
    6085             :         int node, cpu;
    6086             : 
    6087           1 :         if (num_possible_nodes() <= 1)
    6088             :                 return;
    6089             : 
    6090             :         if (wq_disable_numa) {
    6091             :                 pr_info("workqueue: NUMA affinity support disabled\n");
    6092             :                 return;
    6093             :         }
    6094             : 
    6095             :         for_each_possible_cpu(cpu) {
    6096             :                 if (WARN_ON(cpu_to_node(cpu) == NUMA_NO_NODE)) {
    6097             :                         pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu);
    6098             :                         return;
    6099             :                 }
    6100             :         }
    6101             : 
    6102             :         wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs();
    6103             :         BUG_ON(!wq_update_unbound_numa_attrs_buf);
    6104             : 
    6105             :         /*
    6106             :          * We want masks of possible CPUs of each node which isn't readily
    6107             :          * available.  Build one from cpu_to_node() which should have been
    6108             :          * fully initialized by now.
    6109             :          */
    6110             :         tbl = kcalloc(nr_node_ids, sizeof(tbl[0]), GFP_KERNEL);
    6111             :         BUG_ON(!tbl);
    6112             : 
    6113             :         for_each_node(node)
    6114             :                 BUG_ON(!zalloc_cpumask_var_node(&tbl[node], GFP_KERNEL,
    6115             :                                 node_online(node) ? node : NUMA_NO_NODE));
    6116             : 
    6117             :         for_each_possible_cpu(cpu) {
    6118             :                 node = cpu_to_node(cpu);
    6119             :                 cpumask_set_cpu(cpu, tbl[node]);
    6120             :         }
    6121             : 
    6122             :         wq_numa_possible_cpumask = tbl;
    6123             :         wq_numa_enabled = true;
    6124             : }
    6125             : 
    6126             : /**
    6127             :  * workqueue_init_early - early init for workqueue subsystem
    6128             :  *
    6129             :  * This is the first half of two-staged workqueue subsystem initialization
    6130             :  * and invoked as soon as the bare basics - memory allocation, cpumasks and
    6131             :  * idr are up.  It sets up all the data structures and system workqueues
    6132             :  * and allows early boot code to create workqueues and queue/cancel work
    6133             :  * items.  Actual work item execution starts only after kthreads can be
    6134             :  * created and scheduled right before early initcalls.
    6135             :  */
    6136           1 : void __init workqueue_init_early(void)
    6137             : {
    6138           1 :         int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
    6139             :         int i, cpu;
    6140             : 
    6141             :         BUILD_BUG_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
    6142             : 
    6143           1 :         BUG_ON(!alloc_cpumask_var(&wq_unbound_cpumask, GFP_KERNEL));
    6144           2 :         cpumask_copy(wq_unbound_cpumask, housekeeping_cpumask(HK_TYPE_WQ));
    6145           2 :         cpumask_and(wq_unbound_cpumask, wq_unbound_cpumask, housekeeping_cpumask(HK_TYPE_DOMAIN));
    6146             : 
    6147           1 :         pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
    6148             : 
    6149             :         /* initialize CPU pools */
    6150           2 :         for_each_possible_cpu(cpu) {
    6151             :                 struct worker_pool *pool;
    6152             : 
    6153             :                 i = 0;
    6154           2 :                 for_each_cpu_worker_pool(pool, cpu) {
    6155           2 :                         BUG_ON(init_worker_pool(pool));
    6156           2 :                         pool->cpu = cpu;
    6157           6 :                         cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
    6158           2 :                         pool->attrs->nice = std_nice[i++];
    6159           2 :                         pool->node = cpu_to_node(cpu);
    6160             : 
    6161             :                         /* alloc pool ID */
    6162           2 :                         mutex_lock(&wq_pool_mutex);
    6163           2 :                         BUG_ON(worker_pool_assign_id(pool));
    6164           2 :                         mutex_unlock(&wq_pool_mutex);
    6165             :                 }
    6166             :         }
    6167             : 
    6168             :         /* create default unbound and ordered wq attrs */
    6169           2 :         for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
    6170             :                 struct workqueue_attrs *attrs;
    6171             : 
    6172           2 :                 BUG_ON(!(attrs = alloc_workqueue_attrs()));
    6173           2 :                 attrs->nice = std_nice[i];
    6174           2 :                 unbound_std_wq_attrs[i] = attrs;
    6175             : 
    6176             :                 /*
    6177             :                  * An ordered wq should have only one pwq as ordering is
    6178             :                  * guaranteed by max_active which is enforced by pwqs.
    6179             :                  * Turn off NUMA so that dfl_pwq is used for all nodes.
    6180             :                  */
    6181           2 :                 BUG_ON(!(attrs = alloc_workqueue_attrs()));
    6182           2 :                 attrs->nice = std_nice[i];
    6183           2 :                 attrs->no_numa = true;
    6184           2 :                 ordered_wq_attrs[i] = attrs;
    6185             :         }
    6186             : 
    6187           1 :         system_wq = alloc_workqueue("events", 0, 0);
    6188           1 :         system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
    6189           1 :         system_long_wq = alloc_workqueue("events_long", 0, 0);
    6190           1 :         system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
    6191             :                                             WQ_UNBOUND_MAX_ACTIVE);
    6192           1 :         system_freezable_wq = alloc_workqueue("events_freezable",
    6193             :                                               WQ_FREEZABLE, 0);
    6194           1 :         system_power_efficient_wq = alloc_workqueue("events_power_efficient",
    6195             :                                               WQ_POWER_EFFICIENT, 0);
    6196           1 :         system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient",
    6197             :                                               WQ_FREEZABLE | WQ_POWER_EFFICIENT,
    6198             :                                               0);
    6199           1 :         BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
    6200             :                !system_unbound_wq || !system_freezable_wq ||
    6201             :                !system_power_efficient_wq ||
    6202             :                !system_freezable_power_efficient_wq);
    6203           1 : }
    6204             : 
    6205             : /**
    6206             :  * workqueue_init - bring workqueue subsystem fully online
    6207             :  *
    6208             :  * This is the latter half of two-staged workqueue subsystem initialization
    6209             :  * and invoked as soon as kthreads can be created and scheduled.
    6210             :  * Workqueues have been created and work items queued on them, but there
    6211             :  * are no kworkers executing the work items yet.  Populate the worker pools
    6212             :  * with the initial workers and enable future kworker creations.
    6213             :  */
    6214           1 : void __init workqueue_init(void)
    6215             : {
    6216             :         struct workqueue_struct *wq;
    6217             :         struct worker_pool *pool;
    6218             :         int cpu, bkt;
    6219             : 
    6220             :         /*
    6221             :          * It'd be simpler to initialize NUMA in workqueue_init_early() but
    6222             :          * CPU to node mapping may not be available that early on some
    6223             :          * archs such as power and arm64.  As per-cpu pools created
    6224             :          * previously could be missing node hint and unbound pools NUMA
    6225             :          * affinity, fix them up.
    6226             :          *
    6227             :          * Also, while iterating workqueues, create rescuers if requested.
    6228             :          */
    6229             :         wq_numa_init();
    6230             : 
    6231           1 :         mutex_lock(&wq_pool_mutex);
    6232             : 
    6233           2 :         for_each_possible_cpu(cpu) {
    6234           2 :                 for_each_cpu_worker_pool(pool, cpu) {
    6235           2 :                         pool->node = cpu_to_node(cpu);
    6236             :                 }
    6237             :         }
    6238             : 
    6239           9 :         list_for_each_entry(wq, &workqueues, list) {
    6240           8 :                 wq_update_unbound_numa(wq, smp_processor_id(), true);
    6241           8 :                 WARN(init_rescuer(wq),
    6242             :                      "workqueue: failed to create early rescuer for %s",
    6243             :                      wq->name);
    6244             :         }
    6245             : 
    6246           1 :         mutex_unlock(&wq_pool_mutex);
    6247             : 
    6248             :         /* create the initial workers */
    6249           2 :         for_each_online_cpu(cpu) {
    6250           2 :                 for_each_cpu_worker_pool(pool, cpu) {
    6251           2 :                         pool->flags &= ~POOL_DISASSOCIATED;
    6252           2 :                         BUG_ON(!create_worker(pool));
    6253             :                 }
    6254             :         }
    6255             : 
    6256          65 :         hash_for_each(unbound_pool_hash, bkt, pool, hash_node)
    6257           1 :                 BUG_ON(!create_worker(pool));
    6258             : 
    6259           1 :         wq_online = true;
    6260             :         wq_watchdog_init();
    6261           1 : }
    6262             : 
    6263             : /*
    6264             :  * Despite the naming, this is a no-op function which is here only for avoiding
    6265             :  * link error. Since compile-time warning may fail to catch, we will need to
    6266             :  * emit run-time warning from __flush_workqueue().
    6267             :  */
    6268           0 : void __warn_flushing_systemwide_wq(void) { }
    6269             : EXPORT_SYMBOL(__warn_flushing_systemwide_wq);

Generated by: LCOV version 1.14