LCOV - code coverage report
Current view: top level - lib/math - prime_numbers.c (source / functions) Hit Total Coverage
Test: coverage.info Lines: 39 92 42.4 %
Date: 2023-04-06 08:38:28 Functions: 5 10 50.0 %

          Line data    Source code
       1             : // SPDX-License-Identifier: GPL-2.0-only
       2             : #define pr_fmt(fmt) "prime numbers: " fmt
       3             : 
       4             : #include <linux/module.h>
       5             : #include <linux/mutex.h>
       6             : #include <linux/prime_numbers.h>
       7             : #include <linux/slab.h>
       8             : 
       9             : #define bitmap_size(nbits) (BITS_TO_LONGS(nbits) * sizeof(unsigned long))
      10             : 
      11             : struct primes {
      12             :         struct rcu_head rcu;
      13             :         unsigned long last, sz;
      14             :         unsigned long primes[];
      15             : };
      16             : 
      17             : #if BITS_PER_LONG == 64
      18             : static const struct primes small_primes = {
      19             :         .last = 61,
      20             :         .sz = 64,
      21             :         .primes = {
      22             :                 BIT(2) |
      23             :                 BIT(3) |
      24             :                 BIT(5) |
      25             :                 BIT(7) |
      26             :                 BIT(11) |
      27             :                 BIT(13) |
      28             :                 BIT(17) |
      29             :                 BIT(19) |
      30             :                 BIT(23) |
      31             :                 BIT(29) |
      32             :                 BIT(31) |
      33             :                 BIT(37) |
      34             :                 BIT(41) |
      35             :                 BIT(43) |
      36             :                 BIT(47) |
      37             :                 BIT(53) |
      38             :                 BIT(59) |
      39             :                 BIT(61)
      40             :         }
      41             : };
      42             : #elif BITS_PER_LONG == 32
      43             : static const struct primes small_primes = {
      44             :         .last = 31,
      45             :         .sz = 32,
      46             :         .primes = {
      47             :                 BIT(2) |
      48             :                 BIT(3) |
      49             :                 BIT(5) |
      50             :                 BIT(7) |
      51             :                 BIT(11) |
      52             :                 BIT(13) |
      53             :                 BIT(17) |
      54             :                 BIT(19) |
      55             :                 BIT(23) |
      56             :                 BIT(29) |
      57             :                 BIT(31)
      58             :         }
      59             : };
      60             : #else
      61             : #error "unhandled BITS_PER_LONG"
      62             : #endif
      63             : 
      64             : static DEFINE_MUTEX(lock);
      65             : static const struct primes __rcu *primes = RCU_INITIALIZER(&small_primes);
      66             : 
      67             : static unsigned long selftest_max;
      68             : 
      69             : static bool slow_is_prime_number(unsigned long x)
      70             : {
      71           0 :         unsigned long y = int_sqrt(x);
      72             : 
      73           0 :         while (y > 1) {
      74           0 :                 if ((x % y) == 0)
      75             :                         break;
      76           0 :                 y--;
      77             :         }
      78             : 
      79           0 :         return y == 1;
      80             : }
      81             : 
      82           0 : static unsigned long slow_next_prime_number(unsigned long x)
      83             : {
      84           0 :         while (x < ULONG_MAX && !slow_is_prime_number(++x))
      85             :                 ;
      86             : 
      87           0 :         return x;
      88             : }
      89             : 
      90         663 : static unsigned long clear_multiples(unsigned long x,
      91             :                                      unsigned long *p,
      92             :                                      unsigned long start,
      93             :                                      unsigned long end)
      94             : {
      95             :         unsigned long m;
      96             : 
      97         663 :         m = 2 * x;
      98         663 :         if (m < start)
      99         211 :                 m = roundup(start, x);
     100             : 
     101        4838 :         while (m < end) {
     102        4175 :                 __clear_bit(m, p);
     103        4175 :                 m += x;
     104             :         }
     105             : 
     106         663 :         return x;
     107             : }
     108             : 
     109           5 : static bool expand_to_next_prime(unsigned long x)
     110             : {
     111             :         const struct primes *p;
     112             :         struct primes *new;
     113             :         unsigned long sz, y;
     114             : 
     115             :         /* Betrand's Postulate (or Chebyshev's theorem) states that if n > 3,
     116             :          * there is always at least one prime p between n and 2n - 2.
     117             :          * Equivalently, if n > 1, then there is always at least one prime p
     118             :          * such that n < p < 2n.
     119             :          *
     120             :          * http://mathworld.wolfram.com/BertrandsPostulate.html
     121             :          * https://en.wikipedia.org/wiki/Bertrand's_postulate
     122             :          */
     123           5 :         sz = 2 * x;
     124           5 :         if (sz < x)
     125             :                 return false;
     126             : 
     127           5 :         sz = round_up(sz, BITS_PER_LONG);
     128          10 :         new = kmalloc(sizeof(*new) + bitmap_size(sz),
     129             :                       GFP_KERNEL | __GFP_NOWARN);
     130           5 :         if (!new)
     131             :                 return false;
     132             : 
     133           5 :         mutex_lock(&lock);
     134           5 :         p = rcu_dereference_protected(primes, lockdep_is_held(&lock));
     135           5 :         if (x < p->last) {
     136           0 :                 kfree(new);
     137           0 :                 goto unlock;
     138             :         }
     139             : 
     140             :         /* Where memory permits, track the primes using the
     141             :          * Sieve of Eratosthenes. The sieve is to remove all multiples of known
     142             :          * primes from the set, what remains in the set is therefore prime.
     143             :          */
     144           5 :         bitmap_fill(new->primes, sz);
     145           5 :         bitmap_copy(new->primes, p->primes, p->sz);
     146         668 :         for (y = 2UL; y < sz; y = find_next_bit(new->primes, sz, y + 1))
     147         663 :                 new->last = clear_multiples(y, new->primes, p->sz, sz);
     148           5 :         new->sz = sz;
     149             : 
     150           5 :         BUG_ON(new->last <= x);
     151             : 
     152           5 :         rcu_assign_pointer(primes, new);
     153           5 :         if (p != &small_primes)
     154           4 :                 kfree_rcu((struct primes *)p, rcu);
     155             : 
     156             : unlock:
     157           5 :         mutex_unlock(&lock);
     158           5 :         return true;
     159             : }
     160             : 
     161           0 : static void free_primes(void)
     162             : {
     163             :         const struct primes *p;
     164             : 
     165           0 :         mutex_lock(&lock);
     166           0 :         p = rcu_dereference_protected(primes, lockdep_is_held(&lock));
     167           0 :         if (p != &small_primes) {
     168           0 :                 rcu_assign_pointer(primes, &small_primes);
     169           0 :                 kfree_rcu((struct primes *)p, rcu);
     170             :         }
     171           0 :         mutex_unlock(&lock);
     172           0 : }
     173             : 
     174             : /**
     175             :  * next_prime_number - return the next prime number
     176             :  * @x: the starting point for searching to test
     177             :  *
     178             :  * A prime number is an integer greater than 1 that is only divisible by
     179             :  * itself and 1.  The set of prime numbers is computed using the Sieve of
     180             :  * Eratoshenes (on finding a prime, all multiples of that prime are removed
     181             :  * from the set) enabling a fast lookup of the next prime number larger than
     182             :  * @x. If the sieve fails (memory limitation), the search falls back to using
     183             :  * slow trial-divison, up to the value of ULONG_MAX (which is reported as the
     184             :  * final prime as a sentinel).
     185             :  *
     186             :  * Returns: the next prime number larger than @x
     187             :  */
     188       15438 : unsigned long next_prime_number(unsigned long x)
     189             : {
     190             :         const struct primes *p;
     191             : 
     192             :         rcu_read_lock();
     193       15438 :         p = rcu_dereference(primes);
     194       30881 :         while (x >= p->last) {
     195             :                 rcu_read_unlock();
     196             : 
     197           5 :                 if (!expand_to_next_prime(x))
     198           0 :                         return slow_next_prime_number(x);
     199             : 
     200             :                 rcu_read_lock();
     201           5 :                 p = rcu_dereference(primes);
     202             :         }
     203       15438 :         x = find_next_bit(p->primes, p->last, x + 1);
     204             :         rcu_read_unlock();
     205             : 
     206       15438 :         return x;
     207             : }
     208             : EXPORT_SYMBOL(next_prime_number);
     209             : 
     210             : /**
     211             :  * is_prime_number - test whether the given number is prime
     212             :  * @x: the number to test
     213             :  *
     214             :  * A prime number is an integer greater than 1 that is only divisible by
     215             :  * itself and 1. Internally a cache of prime numbers is kept (to speed up
     216             :  * searching for sequential primes, see next_prime_number()), but if the number
     217             :  * falls outside of that cache, its primality is tested using trial-divison.
     218             :  *
     219             :  * Returns: true if @x is prime, false for composite numbers.
     220             :  */
     221           0 : bool is_prime_number(unsigned long x)
     222             : {
     223             :         const struct primes *p;
     224             :         bool result;
     225             : 
     226             :         rcu_read_lock();
     227           0 :         p = rcu_dereference(primes);
     228           0 :         while (x >= p->sz) {
     229             :                 rcu_read_unlock();
     230             : 
     231           0 :                 if (!expand_to_next_prime(x))
     232           0 :                         return slow_is_prime_number(x);
     233             : 
     234             :                 rcu_read_lock();
     235           0 :                 p = rcu_dereference(primes);
     236             :         }
     237           0 :         result = test_bit(x, p->primes);
     238             :         rcu_read_unlock();
     239             : 
     240           0 :         return result;
     241             : }
     242             : EXPORT_SYMBOL(is_prime_number);
     243             : 
     244           0 : static void dump_primes(void)
     245             : {
     246             :         const struct primes *p;
     247             :         char *buf;
     248             : 
     249           0 :         buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
     250             : 
     251             :         rcu_read_lock();
     252           0 :         p = rcu_dereference(primes);
     253             : 
     254           0 :         if (buf)
     255           0 :                 bitmap_print_to_pagebuf(true, buf, p->primes, p->sz);
     256           0 :         pr_info("primes.{last=%lu, .sz=%lu, .primes[]=...x%lx} = %s\n",
     257             :                 p->last, p->sz, p->primes[BITS_TO_LONGS(p->sz) - 1], buf);
     258             : 
     259             :         rcu_read_unlock();
     260             : 
     261           0 :         kfree(buf);
     262           0 : }
     263             : 
     264           1 : static int selftest(unsigned long max)
     265             : {
     266             :         unsigned long x, last;
     267             : 
     268           1 :         if (!max)
     269             :                 return 0;
     270             : 
     271           0 :         for (last = 0, x = 2; x < max; x++) {
     272           0 :                 bool slow = slow_is_prime_number(x);
     273           0 :                 bool fast = is_prime_number(x);
     274             : 
     275           0 :                 if (slow != fast) {
     276           0 :                         pr_err("inconsistent result for is-prime(%lu): slow=%s, fast=%s!\n",
     277             :                                x, slow ? "yes" : "no", fast ? "yes" : "no");
     278           0 :                         goto err;
     279             :                 }
     280             : 
     281           0 :                 if (!slow)
     282           0 :                         continue;
     283             : 
     284           0 :                 if (next_prime_number(last) != x) {
     285           0 :                         pr_err("incorrect result for next-prime(%lu): expected %lu, got %lu\n",
     286             :                                last, x, next_prime_number(last));
     287           0 :                         goto err;
     288             :                 }
     289             :                 last = x;
     290             :         }
     291             : 
     292           0 :         pr_info("%s(%lu) passed, last prime was %lu\n", __func__, x, last);
     293           0 :         return 0;
     294             : 
     295             : err:
     296           0 :         dump_primes();
     297           0 :         return -EINVAL;
     298             : }
     299             : 
     300           1 : static int __init primes_init(void)
     301             : {
     302           1 :         return selftest(selftest_max);
     303             : }
     304             : 
     305           0 : static void __exit primes_exit(void)
     306             : {
     307           0 :         free_primes();
     308           0 : }
     309             : 
     310             : module_init(primes_init);
     311             : module_exit(primes_exit);
     312             : 
     313             : module_param_named(selftest, selftest_max, ulong, 0400);
     314             : 
     315             : MODULE_AUTHOR("Intel Corporation");
     316             : MODULE_LICENSE("GPL");

Generated by: LCOV version 1.14