LCOV - code coverage report
Current view: top level - mm - memory.c (source / functions) Hit Total Coverage
Test: coverage.info Lines: 23 1460 1.6 %
Date: 2023-04-06 08:38:28 Functions: 3 101 3.0 %

          Line data    Source code
       1             : // SPDX-License-Identifier: GPL-2.0-only
       2             : /*
       3             :  *  linux/mm/memory.c
       4             :  *
       5             :  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
       6             :  */
       7             : 
       8             : /*
       9             :  * demand-loading started 01.12.91 - seems it is high on the list of
      10             :  * things wanted, and it should be easy to implement. - Linus
      11             :  */
      12             : 
      13             : /*
      14             :  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
      15             :  * pages started 02.12.91, seems to work. - Linus.
      16             :  *
      17             :  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
      18             :  * would have taken more than the 6M I have free, but it worked well as
      19             :  * far as I could see.
      20             :  *
      21             :  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
      22             :  */
      23             : 
      24             : /*
      25             :  * Real VM (paging to/from disk) started 18.12.91. Much more work and
      26             :  * thought has to go into this. Oh, well..
      27             :  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
      28             :  *              Found it. Everything seems to work now.
      29             :  * 20.12.91  -  Ok, making the swap-device changeable like the root.
      30             :  */
      31             : 
      32             : /*
      33             :  * 05.04.94  -  Multi-page memory management added for v1.1.
      34             :  *              Idea by Alex Bligh (alex@cconcepts.co.uk)
      35             :  *
      36             :  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
      37             :  *              (Gerhard.Wichert@pdb.siemens.de)
      38             :  *
      39             :  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
      40             :  */
      41             : 
      42             : #include <linux/kernel_stat.h>
      43             : #include <linux/mm.h>
      44             : #include <linux/mm_inline.h>
      45             : #include <linux/sched/mm.h>
      46             : #include <linux/sched/coredump.h>
      47             : #include <linux/sched/numa_balancing.h>
      48             : #include <linux/sched/task.h>
      49             : #include <linux/hugetlb.h>
      50             : #include <linux/mman.h>
      51             : #include <linux/swap.h>
      52             : #include <linux/highmem.h>
      53             : #include <linux/pagemap.h>
      54             : #include <linux/memremap.h>
      55             : #include <linux/kmsan.h>
      56             : #include <linux/ksm.h>
      57             : #include <linux/rmap.h>
      58             : #include <linux/export.h>
      59             : #include <linux/delayacct.h>
      60             : #include <linux/init.h>
      61             : #include <linux/pfn_t.h>
      62             : #include <linux/writeback.h>
      63             : #include <linux/memcontrol.h>
      64             : #include <linux/mmu_notifier.h>
      65             : #include <linux/swapops.h>
      66             : #include <linux/elf.h>
      67             : #include <linux/gfp.h>
      68             : #include <linux/migrate.h>
      69             : #include <linux/string.h>
      70             : #include <linux/memory-tiers.h>
      71             : #include <linux/debugfs.h>
      72             : #include <linux/userfaultfd_k.h>
      73             : #include <linux/dax.h>
      74             : #include <linux/oom.h>
      75             : #include <linux/numa.h>
      76             : #include <linux/perf_event.h>
      77             : #include <linux/ptrace.h>
      78             : #include <linux/vmalloc.h>
      79             : #include <linux/sched/sysctl.h>
      80             : 
      81             : #include <trace/events/kmem.h>
      82             : 
      83             : #include <asm/io.h>
      84             : #include <asm/mmu_context.h>
      85             : #include <asm/pgalloc.h>
      86             : #include <linux/uaccess.h>
      87             : #include <asm/tlb.h>
      88             : #include <asm/tlbflush.h>
      89             : 
      90             : #include "pgalloc-track.h"
      91             : #include "internal.h"
      92             : #include "swap.h"
      93             : 
      94             : #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
      95             : #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
      96             : #endif
      97             : 
      98             : #ifndef CONFIG_NUMA
      99             : unsigned long max_mapnr;
     100             : EXPORT_SYMBOL(max_mapnr);
     101             : 
     102             : struct page *mem_map;
     103             : EXPORT_SYMBOL(mem_map);
     104             : #endif
     105             : 
     106             : static vm_fault_t do_fault(struct vm_fault *vmf);
     107             : 
     108             : /*
     109             :  * A number of key systems in x86 including ioremap() rely on the assumption
     110             :  * that high_memory defines the upper bound on direct map memory, then end
     111             :  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
     112             :  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
     113             :  * and ZONE_HIGHMEM.
     114             :  */
     115             : void *high_memory;
     116             : EXPORT_SYMBOL(high_memory);
     117             : 
     118             : /*
     119             :  * Randomize the address space (stacks, mmaps, brk, etc.).
     120             :  *
     121             :  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
     122             :  *   as ancient (libc5 based) binaries can segfault. )
     123             :  */
     124             : int randomize_va_space __read_mostly =
     125             : #ifdef CONFIG_COMPAT_BRK
     126             :                                         1;
     127             : #else
     128             :                                         2;
     129             : #endif
     130             : 
     131             : #ifndef arch_wants_old_prefaulted_pte
     132             : static inline bool arch_wants_old_prefaulted_pte(void)
     133             : {
     134             :         /*
     135             :          * Transitioning a PTE from 'old' to 'young' can be expensive on
     136             :          * some architectures, even if it's performed in hardware. By
     137             :          * default, "false" means prefaulted entries will be 'young'.
     138             :          */
     139             :         return false;
     140             : }
     141             : #endif
     142             : 
     143           0 : static int __init disable_randmaps(char *s)
     144             : {
     145           0 :         randomize_va_space = 0;
     146           0 :         return 1;
     147             : }
     148             : __setup("norandmaps", disable_randmaps);
     149             : 
     150             : unsigned long zero_pfn __read_mostly;
     151             : EXPORT_SYMBOL(zero_pfn);
     152             : 
     153             : unsigned long highest_memmap_pfn __read_mostly;
     154             : 
     155             : /*
     156             :  * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
     157             :  */
     158           1 : static int __init init_zero_pfn(void)
     159             : {
     160           2 :         zero_pfn = page_to_pfn(ZERO_PAGE(0));
     161           1 :         return 0;
     162             : }
     163             : early_initcall(init_zero_pfn);
     164             : 
     165           0 : void mm_trace_rss_stat(struct mm_struct *mm, int member)
     166             : {
     167           0 :         trace_rss_stat(mm, member);
     168           0 : }
     169             : 
     170             : /*
     171             :  * Note: this doesn't free the actual pages themselves. That
     172             :  * has been handled earlier when unmapping all the memory regions.
     173             :  */
     174           0 : static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
     175             :                            unsigned long addr)
     176             : {
     177           0 :         pgtable_t token = pmd_pgtable(*pmd);
     178           0 :         pmd_clear(pmd);
     179           0 :         pte_free_tlb(tlb, token, addr);
     180           0 :         mm_dec_nr_ptes(tlb->mm);
     181           0 : }
     182             : 
     183           0 : static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
     184             :                                 unsigned long addr, unsigned long end,
     185             :                                 unsigned long floor, unsigned long ceiling)
     186             : {
     187             :         pmd_t *pmd;
     188             :         unsigned long next;
     189             :         unsigned long start;
     190             : 
     191           0 :         start = addr;
     192           0 :         pmd = pmd_offset(pud, addr);
     193             :         do {
     194           0 :                 next = pmd_addr_end(addr, end);
     195           0 :                 if (pmd_none_or_clear_bad(pmd))
     196           0 :                         continue;
     197           0 :                 free_pte_range(tlb, pmd, addr);
     198           0 :         } while (pmd++, addr = next, addr != end);
     199             : 
     200           0 :         start &= PUD_MASK;
     201           0 :         if (start < floor)
     202             :                 return;
     203           0 :         if (ceiling) {
     204           0 :                 ceiling &= PUD_MASK;
     205           0 :                 if (!ceiling)
     206             :                         return;
     207             :         }
     208           0 :         if (end - 1 > ceiling - 1)
     209             :                 return;
     210             : 
     211           0 :         pmd = pmd_offset(pud, start);
     212           0 :         pud_clear(pud);
     213           0 :         pmd_free_tlb(tlb, pmd, start);
     214           0 :         mm_dec_nr_pmds(tlb->mm);
     215             : }
     216             : 
     217           0 : static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
     218             :                                 unsigned long addr, unsigned long end,
     219             :                                 unsigned long floor, unsigned long ceiling)
     220             : {
     221             :         pud_t *pud;
     222             :         unsigned long next;
     223             :         unsigned long start;
     224             : 
     225           0 :         start = addr;
     226           0 :         pud = pud_offset(p4d, addr);
     227             :         do {
     228           0 :                 next = pud_addr_end(addr, end);
     229           0 :                 if (pud_none_or_clear_bad(pud))
     230           0 :                         continue;
     231           0 :                 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
     232           0 :         } while (pud++, addr = next, addr != end);
     233             : 
     234           0 :         start &= P4D_MASK;
     235             :         if (start < floor)
     236             :                 return;
     237             :         if (ceiling) {
     238             :                 ceiling &= P4D_MASK;
     239             :                 if (!ceiling)
     240             :                         return;
     241             :         }
     242             :         if (end - 1 > ceiling - 1)
     243             :                 return;
     244             : 
     245             :         pud = pud_offset(p4d, start);
     246             :         p4d_clear(p4d);
     247             :         pud_free_tlb(tlb, pud, start);
     248             :         mm_dec_nr_puds(tlb->mm);
     249             : }
     250             : 
     251             : static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
     252             :                                 unsigned long addr, unsigned long end,
     253             :                                 unsigned long floor, unsigned long ceiling)
     254             : {
     255             :         p4d_t *p4d;
     256             :         unsigned long next;
     257             :         unsigned long start;
     258             : 
     259           0 :         start = addr;
     260           0 :         p4d = p4d_offset(pgd, addr);
     261             :         do {
     262           0 :                 next = p4d_addr_end(addr, end);
     263           0 :                 if (p4d_none_or_clear_bad(p4d))
     264             :                         continue;
     265           0 :                 free_pud_range(tlb, p4d, addr, next, floor, ceiling);
     266           0 :         } while (p4d++, addr = next, addr != end);
     267             : 
     268           0 :         start &= PGDIR_MASK;
     269             :         if (start < floor)
     270             :                 return;
     271             :         if (ceiling) {
     272             :                 ceiling &= PGDIR_MASK;
     273             :                 if (!ceiling)
     274             :                         return;
     275             :         }
     276             :         if (end - 1 > ceiling - 1)
     277             :                 return;
     278             : 
     279             :         p4d = p4d_offset(pgd, start);
     280             :         pgd_clear(pgd);
     281             :         p4d_free_tlb(tlb, p4d, start);
     282             : }
     283             : 
     284             : /*
     285             :  * This function frees user-level page tables of a process.
     286             :  */
     287           0 : void free_pgd_range(struct mmu_gather *tlb,
     288             :                         unsigned long addr, unsigned long end,
     289             :                         unsigned long floor, unsigned long ceiling)
     290             : {
     291             :         pgd_t *pgd;
     292             :         unsigned long next;
     293             : 
     294             :         /*
     295             :          * The next few lines have given us lots of grief...
     296             :          *
     297             :          * Why are we testing PMD* at this top level?  Because often
     298             :          * there will be no work to do at all, and we'd prefer not to
     299             :          * go all the way down to the bottom just to discover that.
     300             :          *
     301             :          * Why all these "- 1"s?  Because 0 represents both the bottom
     302             :          * of the address space and the top of it (using -1 for the
     303             :          * top wouldn't help much: the masks would do the wrong thing).
     304             :          * The rule is that addr 0 and floor 0 refer to the bottom of
     305             :          * the address space, but end 0 and ceiling 0 refer to the top
     306             :          * Comparisons need to use "end - 1" and "ceiling - 1" (though
     307             :          * that end 0 case should be mythical).
     308             :          *
     309             :          * Wherever addr is brought up or ceiling brought down, we must
     310             :          * be careful to reject "the opposite 0" before it confuses the
     311             :          * subsequent tests.  But what about where end is brought down
     312             :          * by PMD_SIZE below? no, end can't go down to 0 there.
     313             :          *
     314             :          * Whereas we round start (addr) and ceiling down, by different
     315             :          * masks at different levels, in order to test whether a table
     316             :          * now has no other vmas using it, so can be freed, we don't
     317             :          * bother to round floor or end up - the tests don't need that.
     318             :          */
     319             : 
     320           0 :         addr &= PMD_MASK;
     321           0 :         if (addr < floor) {
     322           0 :                 addr += PMD_SIZE;
     323           0 :                 if (!addr)
     324             :                         return;
     325             :         }
     326           0 :         if (ceiling) {
     327           0 :                 ceiling &= PMD_MASK;
     328           0 :                 if (!ceiling)
     329             :                         return;
     330             :         }
     331           0 :         if (end - 1 > ceiling - 1)
     332           0 :                 end -= PMD_SIZE;
     333           0 :         if (addr > end - 1)
     334             :                 return;
     335             :         /*
     336             :          * We add page table cache pages with PAGE_SIZE,
     337             :          * (see pte_free_tlb()), flush the tlb if we need
     338             :          */
     339           0 :         tlb_change_page_size(tlb, PAGE_SIZE);
     340           0 :         pgd = pgd_offset(tlb->mm, addr);
     341             :         do {
     342           0 :                 next = pgd_addr_end(addr, end);
     343           0 :                 if (pgd_none_or_clear_bad(pgd))
     344             :                         continue;
     345             :                 free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
     346           0 :         } while (pgd++, addr = next, addr != end);
     347             : }
     348             : 
     349           0 : void free_pgtables(struct mmu_gather *tlb, struct maple_tree *mt,
     350             :                    struct vm_area_struct *vma, unsigned long floor,
     351             :                    unsigned long ceiling)
     352             : {
     353           0 :         MA_STATE(mas, mt, vma->vm_end, vma->vm_end);
     354             : 
     355             :         do {
     356           0 :                 unsigned long addr = vma->vm_start;
     357             :                 struct vm_area_struct *next;
     358             : 
     359             :                 /*
     360             :                  * Note: USER_PGTABLES_CEILING may be passed as ceiling and may
     361             :                  * be 0.  This will underflow and is okay.
     362             :                  */
     363           0 :                 next = mas_find(&mas, ceiling - 1);
     364             : 
     365             :                 /*
     366             :                  * Hide vma from rmap and truncate_pagecache before freeing
     367             :                  * pgtables
     368             :                  */
     369           0 :                 unlink_anon_vmas(vma);
     370           0 :                 unlink_file_vma(vma);
     371             : 
     372           0 :                 if (is_vm_hugetlb_page(vma)) {
     373             :                         hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
     374             :                                 floor, next ? next->vm_start : ceiling);
     375             :                 } else {
     376             :                         /*
     377             :                          * Optimization: gather nearby vmas into one call down
     378             :                          */
     379           0 :                         while (next && next->vm_start <= vma->vm_end + PMD_SIZE
     380           0 :                                && !is_vm_hugetlb_page(next)) {
     381           0 :                                 vma = next;
     382           0 :                                 next = mas_find(&mas, ceiling - 1);
     383           0 :                                 unlink_anon_vmas(vma);
     384           0 :                                 unlink_file_vma(vma);
     385             :                         }
     386           0 :                         free_pgd_range(tlb, addr, vma->vm_end,
     387             :                                 floor, next ? next->vm_start : ceiling);
     388             :                 }
     389           0 :                 vma = next;
     390           0 :         } while (vma);
     391           0 : }
     392             : 
     393           0 : void pmd_install(struct mm_struct *mm, pmd_t *pmd, pgtable_t *pte)
     394             : {
     395           0 :         spinlock_t *ptl = pmd_lock(mm, pmd);
     396             : 
     397           0 :         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
     398           0 :                 mm_inc_nr_ptes(mm);
     399             :                 /*
     400             :                  * Ensure all pte setup (eg. pte page lock and page clearing) are
     401             :                  * visible before the pte is made visible to other CPUs by being
     402             :                  * put into page tables.
     403             :                  *
     404             :                  * The other side of the story is the pointer chasing in the page
     405             :                  * table walking code (when walking the page table without locking;
     406             :                  * ie. most of the time). Fortunately, these data accesses consist
     407             :                  * of a chain of data-dependent loads, meaning most CPUs (alpha
     408             :                  * being the notable exception) will already guarantee loads are
     409             :                  * seen in-order. See the alpha page table accessors for the
     410             :                  * smp_rmb() barriers in page table walking code.
     411             :                  */
     412           0 :                 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
     413           0 :                 pmd_populate(mm, pmd, *pte);
     414           0 :                 *pte = NULL;
     415             :         }
     416           0 :         spin_unlock(ptl);
     417           0 : }
     418             : 
     419           0 : int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
     420             : {
     421           0 :         pgtable_t new = pte_alloc_one(mm);
     422           0 :         if (!new)
     423             :                 return -ENOMEM;
     424             : 
     425           0 :         pmd_install(mm, pmd, &new);
     426           0 :         if (new)
     427           0 :                 pte_free(mm, new);
     428             :         return 0;
     429             : }
     430             : 
     431          17 : int __pte_alloc_kernel(pmd_t *pmd)
     432             : {
     433          34 :         pte_t *new = pte_alloc_one_kernel(&init_mm);
     434          17 :         if (!new)
     435             :                 return -ENOMEM;
     436             : 
     437          17 :         spin_lock(&init_mm.page_table_lock);
     438          17 :         if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
     439          17 :                 smp_wmb(); /* See comment in pmd_install() */
     440          17 :                 pmd_populate_kernel(&init_mm, pmd, new);
     441          17 :                 new = NULL;
     442             :         }
     443          17 :         spin_unlock(&init_mm.page_table_lock);
     444          17 :         if (new)
     445           0 :                 pte_free_kernel(&init_mm, new);
     446             :         return 0;
     447             : }
     448             : 
     449             : static inline void init_rss_vec(int *rss)
     450             : {
     451           0 :         memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
     452             : }
     453             : 
     454           0 : static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
     455             : {
     456             :         int i;
     457             : 
     458           0 :         if (current->mm == mm)
     459             :                 sync_mm_rss(mm);
     460           0 :         for (i = 0; i < NR_MM_COUNTERS; i++)
     461           0 :                 if (rss[i])
     462           0 :                         add_mm_counter(mm, i, rss[i]);
     463           0 : }
     464             : 
     465             : /*
     466             :  * This function is called to print an error when a bad pte
     467             :  * is found. For example, we might have a PFN-mapped pte in
     468             :  * a region that doesn't allow it.
     469             :  *
     470             :  * The calling function must still handle the error.
     471             :  */
     472           0 : static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
     473             :                           pte_t pte, struct page *page)
     474             : {
     475           0 :         pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
     476           0 :         p4d_t *p4d = p4d_offset(pgd, addr);
     477           0 :         pud_t *pud = pud_offset(p4d, addr);
     478           0 :         pmd_t *pmd = pmd_offset(pud, addr);
     479             :         struct address_space *mapping;
     480             :         pgoff_t index;
     481             :         static unsigned long resume;
     482             :         static unsigned long nr_shown;
     483             :         static unsigned long nr_unshown;
     484             : 
     485             :         /*
     486             :          * Allow a burst of 60 reports, then keep quiet for that minute;
     487             :          * or allow a steady drip of one report per second.
     488             :          */
     489           0 :         if (nr_shown == 60) {
     490           0 :                 if (time_before(jiffies, resume)) {
     491           0 :                         nr_unshown++;
     492           0 :                         return;
     493             :                 }
     494           0 :                 if (nr_unshown) {
     495           0 :                         pr_alert("BUG: Bad page map: %lu messages suppressed\n",
     496             :                                  nr_unshown);
     497           0 :                         nr_unshown = 0;
     498             :                 }
     499           0 :                 nr_shown = 0;
     500             :         }
     501           0 :         if (nr_shown++ == 0)
     502           0 :                 resume = jiffies + 60 * HZ;
     503             : 
     504           0 :         mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
     505           0 :         index = linear_page_index(vma, addr);
     506             : 
     507           0 :         pr_alert("BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
     508             :                  current->comm,
     509             :                  (long long)pte_val(pte), (long long)pmd_val(*pmd));
     510           0 :         if (page)
     511           0 :                 dump_page(page, "bad pte");
     512           0 :         pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n",
     513             :                  (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
     514           0 :         pr_alert("file:%pD fault:%ps mmap:%ps read_folio:%ps\n",
     515             :                  vma->vm_file,
     516             :                  vma->vm_ops ? vma->vm_ops->fault : NULL,
     517             :                  vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
     518             :                  mapping ? mapping->a_ops->read_folio : NULL);
     519           0 :         dump_stack();
     520           0 :         add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
     521             : }
     522             : 
     523             : /*
     524             :  * vm_normal_page -- This function gets the "struct page" associated with a pte.
     525             :  *
     526             :  * "Special" mappings do not wish to be associated with a "struct page" (either
     527             :  * it doesn't exist, or it exists but they don't want to touch it). In this
     528             :  * case, NULL is returned here. "Normal" mappings do have a struct page.
     529             :  *
     530             :  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
     531             :  * pte bit, in which case this function is trivial. Secondly, an architecture
     532             :  * may not have a spare pte bit, which requires a more complicated scheme,
     533             :  * described below.
     534             :  *
     535             :  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
     536             :  * special mapping (even if there are underlying and valid "struct pages").
     537             :  * COWed pages of a VM_PFNMAP are always normal.
     538             :  *
     539             :  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
     540             :  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
     541             :  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
     542             :  * mapping will always honor the rule
     543             :  *
     544             :  *      pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
     545             :  *
     546             :  * And for normal mappings this is false.
     547             :  *
     548             :  * This restricts such mappings to be a linear translation from virtual address
     549             :  * to pfn. To get around this restriction, we allow arbitrary mappings so long
     550             :  * as the vma is not a COW mapping; in that case, we know that all ptes are
     551             :  * special (because none can have been COWed).
     552             :  *
     553             :  *
     554             :  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
     555             :  *
     556             :  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
     557             :  * page" backing, however the difference is that _all_ pages with a struct
     558             :  * page (that is, those where pfn_valid is true) are refcounted and considered
     559             :  * normal pages by the VM. The disadvantage is that pages are refcounted
     560             :  * (which can be slower and simply not an option for some PFNMAP users). The
     561             :  * advantage is that we don't have to follow the strict linearity rule of
     562             :  * PFNMAP mappings in order to support COWable mappings.
     563             :  *
     564             :  */
     565           0 : struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
     566             :                             pte_t pte)
     567             : {
     568           0 :         unsigned long pfn = pte_pfn(pte);
     569             : 
     570             :         if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
     571             :                 if (likely(!pte_special(pte)))
     572             :                         goto check_pfn;
     573             :                 if (vma->vm_ops && vma->vm_ops->find_special_page)
     574             :                         return vma->vm_ops->find_special_page(vma, addr);
     575             :                 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
     576             :                         return NULL;
     577             :                 if (is_zero_pfn(pfn))
     578             :                         return NULL;
     579             :                 if (pte_devmap(pte))
     580             :                 /*
     581             :                  * NOTE: New users of ZONE_DEVICE will not set pte_devmap()
     582             :                  * and will have refcounts incremented on their struct pages
     583             :                  * when they are inserted into PTEs, thus they are safe to
     584             :                  * return here. Legacy ZONE_DEVICE pages that set pte_devmap()
     585             :                  * do not have refcounts. Example of legacy ZONE_DEVICE is
     586             :                  * MEMORY_DEVICE_FS_DAX type in pmem or virtio_fs drivers.
     587             :                  */
     588             :                         return NULL;
     589             : 
     590             :                 print_bad_pte(vma, addr, pte, NULL);
     591             :                 return NULL;
     592             :         }
     593             : 
     594             :         /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
     595             : 
     596           0 :         if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
     597           0 :                 if (vma->vm_flags & VM_MIXEDMAP) {
     598           0 :                         if (!pfn_valid(pfn))
     599             :                                 return NULL;
     600             :                         goto out;
     601             :                 } else {
     602             :                         unsigned long off;
     603           0 :                         off = (addr - vma->vm_start) >> PAGE_SHIFT;
     604           0 :                         if (pfn == vma->vm_pgoff + off)
     605             :                                 return NULL;
     606           0 :                         if (!is_cow_mapping(vma->vm_flags))
     607             :                                 return NULL;
     608             :                 }
     609             :         }
     610             : 
     611           0 :         if (is_zero_pfn(pfn))
     612             :                 return NULL;
     613             : 
     614             : check_pfn:
     615           0 :         if (unlikely(pfn > highest_memmap_pfn)) {
     616           0 :                 print_bad_pte(vma, addr, pte, NULL);
     617           0 :                 return NULL;
     618             :         }
     619             : 
     620             :         /*
     621             :          * NOTE! We still have PageReserved() pages in the page tables.
     622             :          * eg. VDSO mappings can cause them to exist.
     623             :          */
     624             : out:
     625           0 :         return pfn_to_page(pfn);
     626             : }
     627             : 
     628           0 : struct folio *vm_normal_folio(struct vm_area_struct *vma, unsigned long addr,
     629             :                             pte_t pte)
     630             : {
     631           0 :         struct page *page = vm_normal_page(vma, addr, pte);
     632             : 
     633           0 :         if (page)
     634           0 :                 return page_folio(page);
     635             :         return NULL;
     636             : }
     637             : 
     638             : #ifdef CONFIG_TRANSPARENT_HUGEPAGE
     639             : struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
     640             :                                 pmd_t pmd)
     641             : {
     642             :         unsigned long pfn = pmd_pfn(pmd);
     643             : 
     644             :         /*
     645             :          * There is no pmd_special() but there may be special pmds, e.g.
     646             :          * in a direct-access (dax) mapping, so let's just replicate the
     647             :          * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
     648             :          */
     649             :         if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
     650             :                 if (vma->vm_flags & VM_MIXEDMAP) {
     651             :                         if (!pfn_valid(pfn))
     652             :                                 return NULL;
     653             :                         goto out;
     654             :                 } else {
     655             :                         unsigned long off;
     656             :                         off = (addr - vma->vm_start) >> PAGE_SHIFT;
     657             :                         if (pfn == vma->vm_pgoff + off)
     658             :                                 return NULL;
     659             :                         if (!is_cow_mapping(vma->vm_flags))
     660             :                                 return NULL;
     661             :                 }
     662             :         }
     663             : 
     664             :         if (pmd_devmap(pmd))
     665             :                 return NULL;
     666             :         if (is_huge_zero_pmd(pmd))
     667             :                 return NULL;
     668             :         if (unlikely(pfn > highest_memmap_pfn))
     669             :                 return NULL;
     670             : 
     671             :         /*
     672             :          * NOTE! We still have PageReserved() pages in the page tables.
     673             :          * eg. VDSO mappings can cause them to exist.
     674             :          */
     675             : out:
     676             :         return pfn_to_page(pfn);
     677             : }
     678             : #endif
     679             : 
     680             : static void restore_exclusive_pte(struct vm_area_struct *vma,
     681             :                                   struct page *page, unsigned long address,
     682             :                                   pte_t *ptep)
     683             : {
     684             :         pte_t pte;
     685             :         swp_entry_t entry;
     686             : 
     687             :         pte = pte_mkold(mk_pte(page, READ_ONCE(vma->vm_page_prot)));
     688             :         if (pte_swp_soft_dirty(*ptep))
     689             :                 pte = pte_mksoft_dirty(pte);
     690             : 
     691             :         entry = pte_to_swp_entry(*ptep);
     692             :         if (pte_swp_uffd_wp(*ptep))
     693             :                 pte = pte_mkuffd_wp(pte);
     694             :         else if (is_writable_device_exclusive_entry(entry))
     695             :                 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
     696             : 
     697             :         VM_BUG_ON(pte_write(pte) && !(PageAnon(page) && PageAnonExclusive(page)));
     698             : 
     699             :         /*
     700             :          * No need to take a page reference as one was already
     701             :          * created when the swap entry was made.
     702             :          */
     703             :         if (PageAnon(page))
     704             :                 page_add_anon_rmap(page, vma, address, RMAP_NONE);
     705             :         else
     706             :                 /*
     707             :                  * Currently device exclusive access only supports anonymous
     708             :                  * memory so the entry shouldn't point to a filebacked page.
     709             :                  */
     710             :                 WARN_ON_ONCE(1);
     711             : 
     712             :         set_pte_at(vma->vm_mm, address, ptep, pte);
     713             : 
     714             :         /*
     715             :          * No need to invalidate - it was non-present before. However
     716             :          * secondary CPUs may have mappings that need invalidating.
     717             :          */
     718             :         update_mmu_cache(vma, address, ptep);
     719             : }
     720             : 
     721             : /*
     722             :  * Tries to restore an exclusive pte if the page lock can be acquired without
     723             :  * sleeping.
     724             :  */
     725             : static int
     726             : try_restore_exclusive_pte(pte_t *src_pte, struct vm_area_struct *vma,
     727             :                         unsigned long addr)
     728             : {
     729             :         swp_entry_t entry = pte_to_swp_entry(*src_pte);
     730             :         struct page *page = pfn_swap_entry_to_page(entry);
     731             : 
     732             :         if (trylock_page(page)) {
     733             :                 restore_exclusive_pte(vma, page, addr, src_pte);
     734             :                 unlock_page(page);
     735             :                 return 0;
     736             :         }
     737             : 
     738             :         return -EBUSY;
     739             : }
     740             : 
     741             : /*
     742             :  * copy one vm_area from one task to the other. Assumes the page tables
     743             :  * already present in the new task to be cleared in the whole range
     744             :  * covered by this vma.
     745             :  */
     746             : 
     747             : static unsigned long
     748           0 : copy_nonpresent_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
     749             :                 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *dst_vma,
     750             :                 struct vm_area_struct *src_vma, unsigned long addr, int *rss)
     751             : {
     752           0 :         unsigned long vm_flags = dst_vma->vm_flags;
     753           0 :         pte_t pte = *src_pte;
     754             :         struct page *page;
     755           0 :         swp_entry_t entry = pte_to_swp_entry(pte);
     756             : 
     757           0 :         if (likely(!non_swap_entry(entry))) {
     758           0 :                 if (swap_duplicate(entry) < 0)
     759             :                         return -EIO;
     760             : 
     761             :                 /* make sure dst_mm is on swapoff's mmlist. */
     762           0 :                 if (unlikely(list_empty(&dst_mm->mmlist))) {
     763           0 :                         spin_lock(&mmlist_lock);
     764           0 :                         if (list_empty(&dst_mm->mmlist))
     765           0 :                                 list_add(&dst_mm->mmlist,
     766             :                                                 &src_mm->mmlist);
     767             :                         spin_unlock(&mmlist_lock);
     768             :                 }
     769             :                 /* Mark the swap entry as shared. */
     770           0 :                 if (pte_swp_exclusive(*src_pte)) {
     771           0 :                         pte = pte_swp_clear_exclusive(*src_pte);
     772           0 :                         set_pte_at(src_mm, addr, src_pte, pte);
     773             :                 }
     774           0 :                 rss[MM_SWAPENTS]++;
     775           0 :         } else if (is_migration_entry(entry)) {
     776           0 :                 page = pfn_swap_entry_to_page(entry);
     777             : 
     778           0 :                 rss[mm_counter(page)]++;
     779             : 
     780           0 :                 if (!is_readable_migration_entry(entry) &&
     781           0 :                                 is_cow_mapping(vm_flags)) {
     782             :                         /*
     783             :                          * COW mappings require pages in both parent and child
     784             :                          * to be set to read. A previously exclusive entry is
     785             :                          * now shared.
     786             :                          */
     787           0 :                         entry = make_readable_migration_entry(
     788             :                                                         swp_offset(entry));
     789           0 :                         pte = swp_entry_to_pte(entry);
     790           0 :                         if (pte_swp_soft_dirty(*src_pte))
     791             :                                 pte = pte_swp_mksoft_dirty(pte);
     792             :                         if (pte_swp_uffd_wp(*src_pte))
     793             :                                 pte = pte_swp_mkuffd_wp(pte);
     794           0 :                         set_pte_at(src_mm, addr, src_pte, pte);
     795             :                 }
     796           0 :         } else if (is_device_private_entry(entry)) {
     797             :                 page = pfn_swap_entry_to_page(entry);
     798             : 
     799             :                 /*
     800             :                  * Update rss count even for unaddressable pages, as
     801             :                  * they should treated just like normal pages in this
     802             :                  * respect.
     803             :                  *
     804             :                  * We will likely want to have some new rss counters
     805             :                  * for unaddressable pages, at some point. But for now
     806             :                  * keep things as they are.
     807             :                  */
     808             :                 get_page(page);
     809             :                 rss[mm_counter(page)]++;
     810             :                 /* Cannot fail as these pages cannot get pinned. */
     811             :                 BUG_ON(page_try_dup_anon_rmap(page, false, src_vma));
     812             : 
     813             :                 /*
     814             :                  * We do not preserve soft-dirty information, because so
     815             :                  * far, checkpoint/restore is the only feature that
     816             :                  * requires that. And checkpoint/restore does not work
     817             :                  * when a device driver is involved (you cannot easily
     818             :                  * save and restore device driver state).
     819             :                  */
     820             :                 if (is_writable_device_private_entry(entry) &&
     821             :                     is_cow_mapping(vm_flags)) {
     822             :                         entry = make_readable_device_private_entry(
     823             :                                                         swp_offset(entry));
     824             :                         pte = swp_entry_to_pte(entry);
     825             :                         if (pte_swp_uffd_wp(*src_pte))
     826             :                                 pte = pte_swp_mkuffd_wp(pte);
     827             :                         set_pte_at(src_mm, addr, src_pte, pte);
     828             :                 }
     829           0 :         } else if (is_device_exclusive_entry(entry)) {
     830             :                 /*
     831             :                  * Make device exclusive entries present by restoring the
     832             :                  * original entry then copying as for a present pte. Device
     833             :                  * exclusive entries currently only support private writable
     834             :                  * (ie. COW) mappings.
     835             :                  */
     836             :                 VM_BUG_ON(!is_cow_mapping(src_vma->vm_flags));
     837             :                 if (try_restore_exclusive_pte(src_pte, src_vma, addr))
     838             :                         return -EBUSY;
     839             :                 return -ENOENT;
     840           0 :         } else if (is_pte_marker_entry(entry)) {
     841           0 :                 if (is_swapin_error_entry(entry) || userfaultfd_wp(dst_vma))
     842           0 :                         set_pte_at(dst_mm, addr, dst_pte, pte);
     843             :                 return 0;
     844             :         }
     845           0 :         if (!userfaultfd_wp(dst_vma))
     846             :                 pte = pte_swp_clear_uffd_wp(pte);
     847           0 :         set_pte_at(dst_mm, addr, dst_pte, pte);
     848             :         return 0;
     849             : }
     850             : 
     851             : /*
     852             :  * Copy a present and normal page.
     853             :  *
     854             :  * NOTE! The usual case is that this isn't required;
     855             :  * instead, the caller can just increase the page refcount
     856             :  * and re-use the pte the traditional way.
     857             :  *
     858             :  * And if we need a pre-allocated page but don't yet have
     859             :  * one, return a negative error to let the preallocation
     860             :  * code know so that it can do so outside the page table
     861             :  * lock.
     862             :  */
     863             : static inline int
     864           0 : copy_present_page(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
     865             :                   pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
     866             :                   struct folio **prealloc, struct page *page)
     867             : {
     868             :         struct folio *new_folio;
     869             :         pte_t pte;
     870             : 
     871           0 :         new_folio = *prealloc;
     872           0 :         if (!new_folio)
     873             :                 return -EAGAIN;
     874             : 
     875             :         /*
     876             :          * We have a prealloc page, all good!  Take it
     877             :          * over and copy the page & arm it.
     878             :          */
     879           0 :         *prealloc = NULL;
     880           0 :         copy_user_highpage(&new_folio->page, page, addr, src_vma);
     881           0 :         __folio_mark_uptodate(new_folio);
     882           0 :         folio_add_new_anon_rmap(new_folio, dst_vma, addr);
     883           0 :         folio_add_lru_vma(new_folio, dst_vma);
     884           0 :         rss[MM_ANONPAGES]++;
     885             : 
     886             :         /* All done, just insert the new page copy in the child */
     887           0 :         pte = mk_pte(&new_folio->page, dst_vma->vm_page_prot);
     888           0 :         pte = maybe_mkwrite(pte_mkdirty(pte), dst_vma);
     889           0 :         if (userfaultfd_pte_wp(dst_vma, *src_pte))
     890             :                 /* Uffd-wp needs to be delivered to dest pte as well */
     891             :                 pte = pte_mkuffd_wp(pte);
     892           0 :         set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
     893             :         return 0;
     894             : }
     895             : 
     896             : /*
     897             :  * Copy one pte.  Returns 0 if succeeded, or -EAGAIN if one preallocated page
     898             :  * is required to copy this pte.
     899             :  */
     900             : static inline int
     901           0 : copy_present_pte(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
     902             :                  pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
     903             :                  struct folio **prealloc)
     904             : {
     905           0 :         struct mm_struct *src_mm = src_vma->vm_mm;
     906           0 :         unsigned long vm_flags = src_vma->vm_flags;
     907           0 :         pte_t pte = *src_pte;
     908             :         struct page *page;
     909             :         struct folio *folio;
     910             : 
     911           0 :         page = vm_normal_page(src_vma, addr, pte);
     912           0 :         if (page)
     913           0 :                 folio = page_folio(page);
     914           0 :         if (page && folio_test_anon(folio)) {
     915             :                 /*
     916             :                  * If this page may have been pinned by the parent process,
     917             :                  * copy the page immediately for the child so that we'll always
     918             :                  * guarantee the pinned page won't be randomly replaced in the
     919             :                  * future.
     920             :                  */
     921           0 :                 folio_get(folio);
     922           0 :                 if (unlikely(page_try_dup_anon_rmap(page, false, src_vma))) {
     923             :                         /* Page may be pinned, we have to copy. */
     924           0 :                         folio_put(folio);
     925           0 :                         return copy_present_page(dst_vma, src_vma, dst_pte, src_pte,
     926             :                                                  addr, rss, prealloc, page);
     927             :                 }
     928           0 :                 rss[MM_ANONPAGES]++;
     929           0 :         } else if (page) {
     930           0 :                 folio_get(folio);
     931           0 :                 page_dup_file_rmap(page, false);
     932           0 :                 rss[mm_counter_file(page)]++;
     933             :         }
     934             : 
     935             :         /*
     936             :          * If it's a COW mapping, write protect it both
     937             :          * in the parent and the child
     938             :          */
     939           0 :         if (is_cow_mapping(vm_flags) && pte_write(pte)) {
     940           0 :                 ptep_set_wrprotect(src_mm, addr, src_pte);
     941             :                 pte = pte_wrprotect(pte);
     942             :         }
     943             :         VM_BUG_ON(page && folio_test_anon(folio) && PageAnonExclusive(page));
     944             : 
     945             :         /*
     946             :          * If it's a shared mapping, mark it clean in
     947             :          * the child
     948             :          */
     949           0 :         if (vm_flags & VM_SHARED)
     950             :                 pte = pte_mkclean(pte);
     951           0 :         pte = pte_mkold(pte);
     952             : 
     953           0 :         if (!userfaultfd_wp(dst_vma))
     954             :                 pte = pte_clear_uffd_wp(pte);
     955             : 
     956           0 :         set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
     957             :         return 0;
     958             : }
     959             : 
     960             : static inline struct folio *page_copy_prealloc(struct mm_struct *src_mm,
     961             :                 struct vm_area_struct *vma, unsigned long addr)
     962             : {
     963             :         struct folio *new_folio;
     964             : 
     965           0 :         new_folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma, addr, false);
     966           0 :         if (!new_folio)
     967             :                 return NULL;
     968             : 
     969           0 :         if (mem_cgroup_charge(new_folio, src_mm, GFP_KERNEL)) {
     970             :                 folio_put(new_folio);
     971             :                 return NULL;
     972             :         }
     973           0 :         cgroup_throttle_swaprate(&new_folio->page, GFP_KERNEL);
     974             : 
     975             :         return new_folio;
     976             : }
     977             : 
     978             : static int
     979           0 : copy_pte_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
     980             :                pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
     981             :                unsigned long end)
     982             : {
     983           0 :         struct mm_struct *dst_mm = dst_vma->vm_mm;
     984           0 :         struct mm_struct *src_mm = src_vma->vm_mm;
     985             :         pte_t *orig_src_pte, *orig_dst_pte;
     986             :         pte_t *src_pte, *dst_pte;
     987             :         spinlock_t *src_ptl, *dst_ptl;
     988           0 :         int progress, ret = 0;
     989             :         int rss[NR_MM_COUNTERS];
     990           0 :         swp_entry_t entry = (swp_entry_t){0};
     991           0 :         struct folio *prealloc = NULL;
     992             : 
     993             : again:
     994           0 :         progress = 0;
     995           0 :         init_rss_vec(rss);
     996             : 
     997           0 :         dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
     998           0 :         if (!dst_pte) {
     999             :                 ret = -ENOMEM;
    1000             :                 goto out;
    1001             :         }
    1002           0 :         src_pte = pte_offset_map(src_pmd, addr);
    1003           0 :         src_ptl = pte_lockptr(src_mm, src_pmd);
    1004           0 :         spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
    1005           0 :         orig_src_pte = src_pte;
    1006           0 :         orig_dst_pte = dst_pte;
    1007             :         arch_enter_lazy_mmu_mode();
    1008             : 
    1009             :         do {
    1010             :                 /*
    1011             :                  * We are holding two locks at this point - either of them
    1012             :                  * could generate latencies in another task on another CPU.
    1013             :                  */
    1014           0 :                 if (progress >= 32) {
    1015           0 :                         progress = 0;
    1016           0 :                         if (need_resched() ||
    1017             :                             spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
    1018             :                                 break;
    1019             :                 }
    1020           0 :                 if (pte_none(*src_pte)) {
    1021           0 :                         progress++;
    1022           0 :                         continue;
    1023             :                 }
    1024           0 :                 if (unlikely(!pte_present(*src_pte))) {
    1025           0 :                         ret = copy_nonpresent_pte(dst_mm, src_mm,
    1026             :                                                   dst_pte, src_pte,
    1027             :                                                   dst_vma, src_vma,
    1028             :                                                   addr, rss);
    1029           0 :                         if (ret == -EIO) {
    1030             :                                 entry = pte_to_swp_entry(*src_pte);
    1031             :                                 break;
    1032           0 :                         } else if (ret == -EBUSY) {
    1033             :                                 break;
    1034           0 :                         } else if (!ret) {
    1035           0 :                                 progress += 8;
    1036           0 :                                 continue;
    1037             :                         }
    1038             : 
    1039             :                         /*
    1040             :                          * Device exclusive entry restored, continue by copying
    1041             :                          * the now present pte.
    1042             :                          */
    1043           0 :                         WARN_ON_ONCE(ret != -ENOENT);
    1044             :                 }
    1045             :                 /* copy_present_pte() will clear `*prealloc' if consumed */
    1046           0 :                 ret = copy_present_pte(dst_vma, src_vma, dst_pte, src_pte,
    1047             :                                        addr, rss, &prealloc);
    1048             :                 /*
    1049             :                  * If we need a pre-allocated page for this pte, drop the
    1050             :                  * locks, allocate, and try again.
    1051             :                  */
    1052           0 :                 if (unlikely(ret == -EAGAIN))
    1053             :                         break;
    1054           0 :                 if (unlikely(prealloc)) {
    1055             :                         /*
    1056             :                          * pre-alloc page cannot be reused by next time so as
    1057             :                          * to strictly follow mempolicy (e.g., alloc_page_vma()
    1058             :                          * will allocate page according to address).  This
    1059             :                          * could only happen if one pinned pte changed.
    1060             :                          */
    1061           0 :                         folio_put(prealloc);
    1062           0 :                         prealloc = NULL;
    1063             :                 }
    1064           0 :                 progress += 8;
    1065           0 :         } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
    1066             : 
    1067             :         arch_leave_lazy_mmu_mode();
    1068           0 :         spin_unlock(src_ptl);
    1069             :         pte_unmap(orig_src_pte);
    1070           0 :         add_mm_rss_vec(dst_mm, rss);
    1071           0 :         pte_unmap_unlock(orig_dst_pte, dst_ptl);
    1072           0 :         cond_resched();
    1073             : 
    1074           0 :         if (ret == -EIO) {
    1075             :                 VM_WARN_ON_ONCE(!entry.val);
    1076           0 :                 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) {
    1077             :                         ret = -ENOMEM;
    1078             :                         goto out;
    1079             :                 }
    1080           0 :                 entry.val = 0;
    1081           0 :         } else if (ret == -EBUSY) {
    1082             :                 goto out;
    1083           0 :         } else if (ret ==  -EAGAIN) {
    1084           0 :                 prealloc = page_copy_prealloc(src_mm, src_vma, addr);
    1085           0 :                 if (!prealloc)
    1086             :                         return -ENOMEM;
    1087             :         } else if (ret) {
    1088             :                 VM_WARN_ON_ONCE(1);
    1089             :         }
    1090             : 
    1091             :         /* We've captured and resolved the error. Reset, try again. */
    1092           0 :         ret = 0;
    1093             : 
    1094           0 :         if (addr != end)
    1095             :                 goto again;
    1096             : out:
    1097           0 :         if (unlikely(prealloc))
    1098           0 :                 folio_put(prealloc);
    1099             :         return ret;
    1100             : }
    1101             : 
    1102             : static inline int
    1103           0 : copy_pmd_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
    1104             :                pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
    1105             :                unsigned long end)
    1106             : {
    1107           0 :         struct mm_struct *dst_mm = dst_vma->vm_mm;
    1108           0 :         struct mm_struct *src_mm = src_vma->vm_mm;
    1109             :         pmd_t *src_pmd, *dst_pmd;
    1110             :         unsigned long next;
    1111             : 
    1112           0 :         dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
    1113           0 :         if (!dst_pmd)
    1114             :                 return -ENOMEM;
    1115           0 :         src_pmd = pmd_offset(src_pud, addr);
    1116             :         do {
    1117           0 :                 next = pmd_addr_end(addr, end);
    1118           0 :                 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
    1119           0 :                         || pmd_devmap(*src_pmd)) {
    1120             :                         int err;
    1121             :                         VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, src_vma);
    1122             :                         err = copy_huge_pmd(dst_mm, src_mm, dst_pmd, src_pmd,
    1123             :                                             addr, dst_vma, src_vma);
    1124             :                         if (err == -ENOMEM)
    1125             :                                 return -ENOMEM;
    1126             :                         if (!err)
    1127             :                                 continue;
    1128             :                         /* fall through */
    1129             :                 }
    1130           0 :                 if (pmd_none_or_clear_bad(src_pmd))
    1131           0 :                         continue;
    1132           0 :                 if (copy_pte_range(dst_vma, src_vma, dst_pmd, src_pmd,
    1133             :                                    addr, next))
    1134             :                         return -ENOMEM;
    1135           0 :         } while (dst_pmd++, src_pmd++, addr = next, addr != end);
    1136             :         return 0;
    1137             : }
    1138             : 
    1139             : static inline int
    1140           0 : copy_pud_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
    1141             :                p4d_t *dst_p4d, p4d_t *src_p4d, unsigned long addr,
    1142             :                unsigned long end)
    1143             : {
    1144           0 :         struct mm_struct *dst_mm = dst_vma->vm_mm;
    1145           0 :         struct mm_struct *src_mm = src_vma->vm_mm;
    1146             :         pud_t *src_pud, *dst_pud;
    1147             :         unsigned long next;
    1148             : 
    1149           0 :         dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
    1150           0 :         if (!dst_pud)
    1151             :                 return -ENOMEM;
    1152           0 :         src_pud = pud_offset(src_p4d, addr);
    1153             :         do {
    1154           0 :                 next = pud_addr_end(addr, end);
    1155           0 :                 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
    1156             :                         int err;
    1157             : 
    1158             :                         VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, src_vma);
    1159             :                         err = copy_huge_pud(dst_mm, src_mm,
    1160             :                                             dst_pud, src_pud, addr, src_vma);
    1161             :                         if (err == -ENOMEM)
    1162             :                                 return -ENOMEM;
    1163             :                         if (!err)
    1164             :                                 continue;
    1165             :                         /* fall through */
    1166             :                 }
    1167           0 :                 if (pud_none_or_clear_bad(src_pud))
    1168           0 :                         continue;
    1169           0 :                 if (copy_pmd_range(dst_vma, src_vma, dst_pud, src_pud,
    1170             :                                    addr, next))
    1171             :                         return -ENOMEM;
    1172           0 :         } while (dst_pud++, src_pud++, addr = next, addr != end);
    1173           0 :         return 0;
    1174             : }
    1175             : 
    1176             : static inline int
    1177             : copy_p4d_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
    1178             :                pgd_t *dst_pgd, pgd_t *src_pgd, unsigned long addr,
    1179             :                unsigned long end)
    1180             : {
    1181           0 :         struct mm_struct *dst_mm = dst_vma->vm_mm;
    1182             :         p4d_t *src_p4d, *dst_p4d;
    1183             :         unsigned long next;
    1184             : 
    1185           0 :         dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
    1186           0 :         if (!dst_p4d)
    1187             :                 return -ENOMEM;
    1188           0 :         src_p4d = p4d_offset(src_pgd, addr);
    1189             :         do {
    1190           0 :                 next = p4d_addr_end(addr, end);
    1191           0 :                 if (p4d_none_or_clear_bad(src_p4d))
    1192             :                         continue;
    1193           0 :                 if (copy_pud_range(dst_vma, src_vma, dst_p4d, src_p4d,
    1194             :                                    addr, next))
    1195             :                         return -ENOMEM;
    1196           0 :         } while (dst_p4d++, src_p4d++, addr = next, addr != end);
    1197             :         return 0;
    1198             : }
    1199             : 
    1200             : /*
    1201             :  * Return true if the vma needs to copy the pgtable during this fork().  Return
    1202             :  * false when we can speed up fork() by allowing lazy page faults later until
    1203             :  * when the child accesses the memory range.
    1204             :  */
    1205             : static bool
    1206             : vma_needs_copy(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
    1207             : {
    1208             :         /*
    1209             :          * Always copy pgtables when dst_vma has uffd-wp enabled even if it's
    1210             :          * file-backed (e.g. shmem). Because when uffd-wp is enabled, pgtable
    1211             :          * contains uffd-wp protection information, that's something we can't
    1212             :          * retrieve from page cache, and skip copying will lose those info.
    1213             :          */
    1214           0 :         if (userfaultfd_wp(dst_vma))
    1215             :                 return true;
    1216             : 
    1217           0 :         if (src_vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
    1218             :                 return true;
    1219             : 
    1220           0 :         if (src_vma->anon_vma)
    1221             :                 return true;
    1222             : 
    1223             :         /*
    1224             :          * Don't copy ptes where a page fault will fill them correctly.  Fork
    1225             :          * becomes much lighter when there are big shared or private readonly
    1226             :          * mappings. The tradeoff is that copy_page_range is more efficient
    1227             :          * than faulting.
    1228             :          */
    1229             :         return false;
    1230             : }
    1231             : 
    1232             : int
    1233           0 : copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
    1234             : {
    1235             :         pgd_t *src_pgd, *dst_pgd;
    1236             :         unsigned long next;
    1237           0 :         unsigned long addr = src_vma->vm_start;
    1238           0 :         unsigned long end = src_vma->vm_end;
    1239           0 :         struct mm_struct *dst_mm = dst_vma->vm_mm;
    1240           0 :         struct mm_struct *src_mm = src_vma->vm_mm;
    1241             :         struct mmu_notifier_range range;
    1242             :         bool is_cow;
    1243             :         int ret;
    1244             : 
    1245           0 :         if (!vma_needs_copy(dst_vma, src_vma))
    1246             :                 return 0;
    1247             : 
    1248           0 :         if (is_vm_hugetlb_page(src_vma))
    1249             :                 return copy_hugetlb_page_range(dst_mm, src_mm, dst_vma, src_vma);
    1250             : 
    1251             :         if (unlikely(src_vma->vm_flags & VM_PFNMAP)) {
    1252             :                 /*
    1253             :                  * We do not free on error cases below as remove_vma
    1254             :                  * gets called on error from higher level routine
    1255             :                  */
    1256             :                 ret = track_pfn_copy(src_vma);
    1257             :                 if (ret)
    1258             :                         return ret;
    1259             :         }
    1260             : 
    1261             :         /*
    1262             :          * We need to invalidate the secondary MMU mappings only when
    1263             :          * there could be a permission downgrade on the ptes of the
    1264             :          * parent mm. And a permission downgrade will only happen if
    1265             :          * is_cow_mapping() returns true.
    1266             :          */
    1267           0 :         is_cow = is_cow_mapping(src_vma->vm_flags);
    1268             : 
    1269           0 :         if (is_cow) {
    1270           0 :                 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
    1271             :                                         0, src_mm, addr, end);
    1272           0 :                 mmu_notifier_invalidate_range_start(&range);
    1273             :                 /*
    1274             :                  * Disabling preemption is not needed for the write side, as
    1275             :                  * the read side doesn't spin, but goes to the mmap_lock.
    1276             :                  *
    1277             :                  * Use the raw variant of the seqcount_t write API to avoid
    1278             :                  * lockdep complaining about preemptibility.
    1279             :                  */
    1280           0 :                 mmap_assert_write_locked(src_mm);
    1281           0 :                 raw_write_seqcount_begin(&src_mm->write_protect_seq);
    1282             :         }
    1283             : 
    1284           0 :         ret = 0;
    1285           0 :         dst_pgd = pgd_offset(dst_mm, addr);
    1286           0 :         src_pgd = pgd_offset(src_mm, addr);
    1287             :         do {
    1288           0 :                 next = pgd_addr_end(addr, end);
    1289           0 :                 if (pgd_none_or_clear_bad(src_pgd))
    1290             :                         continue;
    1291           0 :                 if (unlikely(copy_p4d_range(dst_vma, src_vma, dst_pgd, src_pgd,
    1292             :                                             addr, next))) {
    1293             :                         ret = -ENOMEM;
    1294             :                         break;
    1295             :                 }
    1296           0 :         } while (dst_pgd++, src_pgd++, addr = next, addr != end);
    1297             : 
    1298           0 :         if (is_cow) {
    1299           0 :                 raw_write_seqcount_end(&src_mm->write_protect_seq);
    1300           0 :                 mmu_notifier_invalidate_range_end(&range);
    1301             :         }
    1302             :         return ret;
    1303             : }
    1304             : 
    1305             : /* Whether we should zap all COWed (private) pages too */
    1306             : static inline bool should_zap_cows(struct zap_details *details)
    1307             : {
    1308             :         /* By default, zap all pages */
    1309           0 :         if (!details)
    1310             :                 return true;
    1311             : 
    1312             :         /* Or, we zap COWed pages only if the caller wants to */
    1313           0 :         return details->even_cows;
    1314             : }
    1315             : 
    1316             : /* Decides whether we should zap this page with the page pointer specified */
    1317           0 : static inline bool should_zap_page(struct zap_details *details, struct page *page)
    1318             : {
    1319             :         /* If we can make a decision without *page.. */
    1320           0 :         if (should_zap_cows(details))
    1321             :                 return true;
    1322             : 
    1323             :         /* E.g. the caller passes NULL for the case of a zero page */
    1324           0 :         if (!page)
    1325             :                 return true;
    1326             : 
    1327             :         /* Otherwise we should only zap non-anon pages */
    1328           0 :         return !PageAnon(page);
    1329             : }
    1330             : 
    1331             : static inline bool zap_drop_file_uffd_wp(struct zap_details *details)
    1332             : {
    1333             :         if (!details)
    1334             :                 return false;
    1335             : 
    1336             :         return details->zap_flags & ZAP_FLAG_DROP_MARKER;
    1337             : }
    1338             : 
    1339             : /*
    1340             :  * This function makes sure that we'll replace the none pte with an uffd-wp
    1341             :  * swap special pte marker when necessary. Must be with the pgtable lock held.
    1342             :  */
    1343             : static inline void
    1344             : zap_install_uffd_wp_if_needed(struct vm_area_struct *vma,
    1345             :                               unsigned long addr, pte_t *pte,
    1346             :                               struct zap_details *details, pte_t pteval)
    1347             : {
    1348           0 :         if (zap_drop_file_uffd_wp(details))
    1349             :                 return;
    1350             : 
    1351             :         pte_install_uffd_wp_if_needed(vma, addr, pte, pteval);
    1352             : }
    1353             : 
    1354           0 : static unsigned long zap_pte_range(struct mmu_gather *tlb,
    1355             :                                 struct vm_area_struct *vma, pmd_t *pmd,
    1356             :                                 unsigned long addr, unsigned long end,
    1357             :                                 struct zap_details *details)
    1358             : {
    1359           0 :         struct mm_struct *mm = tlb->mm;
    1360           0 :         int force_flush = 0;
    1361             :         int rss[NR_MM_COUNTERS];
    1362             :         spinlock_t *ptl;
    1363             :         pte_t *start_pte;
    1364             :         pte_t *pte;
    1365             :         swp_entry_t entry;
    1366             : 
    1367           0 :         tlb_change_page_size(tlb, PAGE_SIZE);
    1368             : again:
    1369           0 :         init_rss_vec(rss);
    1370           0 :         start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
    1371           0 :         pte = start_pte;
    1372           0 :         flush_tlb_batched_pending(mm);
    1373             :         arch_enter_lazy_mmu_mode();
    1374             :         do {
    1375           0 :                 pte_t ptent = *pte;
    1376             :                 struct page *page;
    1377             : 
    1378           0 :                 if (pte_none(ptent))
    1379           0 :                         continue;
    1380             : 
    1381           0 :                 if (need_resched())
    1382             :                         break;
    1383             : 
    1384           0 :                 if (pte_present(ptent)) {
    1385             :                         unsigned int delay_rmap;
    1386             : 
    1387           0 :                         page = vm_normal_page(vma, addr, ptent);
    1388           0 :                         if (unlikely(!should_zap_page(details, page)))
    1389           0 :                                 continue;
    1390           0 :                         ptent = ptep_get_and_clear_full(mm, addr, pte,
    1391           0 :                                                         tlb->fullmm);
    1392           0 :                         tlb_remove_tlb_entry(tlb, pte, addr);
    1393           0 :                         zap_install_uffd_wp_if_needed(vma, addr, pte, details,
    1394             :                                                       ptent);
    1395           0 :                         if (unlikely(!page))
    1396           0 :                                 continue;
    1397             : 
    1398           0 :                         delay_rmap = 0;
    1399           0 :                         if (!PageAnon(page)) {
    1400           0 :                                 if (pte_dirty(ptent)) {
    1401           0 :                                         set_page_dirty(page);
    1402             :                                         if (tlb_delay_rmap(tlb)) {
    1403             :                                                 delay_rmap = 1;
    1404             :                                                 force_flush = 1;
    1405             :                                         }
    1406             :                                 }
    1407           0 :                                 if (pte_young(ptent) && likely(vma_has_recency(vma)))
    1408           0 :                                         mark_page_accessed(page);
    1409             :                         }
    1410           0 :                         rss[mm_counter(page)]--;
    1411             :                         if (!delay_rmap) {
    1412           0 :                                 page_remove_rmap(page, vma, false);
    1413           0 :                                 if (unlikely(page_mapcount(page) < 0))
    1414           0 :                                         print_bad_pte(vma, addr, ptent, page);
    1415             :                         }
    1416           0 :                         if (unlikely(__tlb_remove_page(tlb, page, delay_rmap))) {
    1417             :                                 force_flush = 1;
    1418             :                                 addr += PAGE_SIZE;
    1419             :                                 break;
    1420             :                         }
    1421           0 :                         continue;
    1422             :                 }
    1423             : 
    1424           0 :                 entry = pte_to_swp_entry(ptent);
    1425           0 :                 if (is_device_private_entry(entry) ||
    1426           0 :                     is_device_exclusive_entry(entry)) {
    1427             :                         page = pfn_swap_entry_to_page(entry);
    1428             :                         if (unlikely(!should_zap_page(details, page)))
    1429             :                                 continue;
    1430             :                         /*
    1431             :                          * Both device private/exclusive mappings should only
    1432             :                          * work with anonymous page so far, so we don't need to
    1433             :                          * consider uffd-wp bit when zap. For more information,
    1434             :                          * see zap_install_uffd_wp_if_needed().
    1435             :                          */
    1436             :                         WARN_ON_ONCE(!vma_is_anonymous(vma));
    1437             :                         rss[mm_counter(page)]--;
    1438             :                         if (is_device_private_entry(entry))
    1439             :                                 page_remove_rmap(page, vma, false);
    1440             :                         put_page(page);
    1441           0 :                 } else if (!non_swap_entry(entry)) {
    1442             :                         /* Genuine swap entry, hence a private anon page */
    1443           0 :                         if (!should_zap_cows(details))
    1444           0 :                                 continue;
    1445           0 :                         rss[MM_SWAPENTS]--;
    1446           0 :                         if (unlikely(!free_swap_and_cache(entry)))
    1447           0 :                                 print_bad_pte(vma, addr, ptent, NULL);
    1448           0 :                 } else if (is_migration_entry(entry)) {
    1449           0 :                         page = pfn_swap_entry_to_page(entry);
    1450           0 :                         if (!should_zap_page(details, page))
    1451           0 :                                 continue;
    1452           0 :                         rss[mm_counter(page)]--;
    1453           0 :                 } else if (pte_marker_entry_uffd_wp(entry)) {
    1454             :                         /* Only drop the uffd-wp marker if explicitly requested */
    1455             :                         if (!zap_drop_file_uffd_wp(details))
    1456             :                                 continue;
    1457           0 :                 } else if (is_hwpoison_entry(entry) ||
    1458           0 :                            is_swapin_error_entry(entry)) {
    1459           0 :                         if (!should_zap_cows(details))
    1460           0 :                                 continue;
    1461             :                 } else {
    1462             :                         /* We should have covered all the swap entry types */
    1463           0 :                         WARN_ON_ONCE(1);
    1464             :                 }
    1465           0 :                 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
    1466           0 :                 zap_install_uffd_wp_if_needed(vma, addr, pte, details, ptent);
    1467           0 :         } while (pte++, addr += PAGE_SIZE, addr != end);
    1468             : 
    1469           0 :         add_mm_rss_vec(mm, rss);
    1470             :         arch_leave_lazy_mmu_mode();
    1471             : 
    1472             :         /* Do the actual TLB flush before dropping ptl */
    1473           0 :         if (force_flush) {
    1474           0 :                 tlb_flush_mmu_tlbonly(tlb);
    1475           0 :                 tlb_flush_rmaps(tlb, vma);
    1476             :         }
    1477           0 :         pte_unmap_unlock(start_pte, ptl);
    1478             : 
    1479             :         /*
    1480             :          * If we forced a TLB flush (either due to running out of
    1481             :          * batch buffers or because we needed to flush dirty TLB
    1482             :          * entries before releasing the ptl), free the batched
    1483             :          * memory too. Restart if we didn't do everything.
    1484             :          */
    1485           0 :         if (force_flush) {
    1486           0 :                 force_flush = 0;
    1487           0 :                 tlb_flush_mmu(tlb);
    1488             :         }
    1489             : 
    1490           0 :         if (addr != end) {
    1491           0 :                 cond_resched();
    1492           0 :                 goto again;
    1493             :         }
    1494             : 
    1495           0 :         return addr;
    1496             : }
    1497             : 
    1498           0 : static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
    1499             :                                 struct vm_area_struct *vma, pud_t *pud,
    1500             :                                 unsigned long addr, unsigned long end,
    1501             :                                 struct zap_details *details)
    1502             : {
    1503             :         pmd_t *pmd;
    1504             :         unsigned long next;
    1505             : 
    1506           0 :         pmd = pmd_offset(pud, addr);
    1507             :         do {
    1508           0 :                 next = pmd_addr_end(addr, end);
    1509           0 :                 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
    1510             :                         if (next - addr != HPAGE_PMD_SIZE)
    1511             :                                 __split_huge_pmd(vma, pmd, addr, false, NULL);
    1512             :                         else if (zap_huge_pmd(tlb, vma, pmd, addr))
    1513             :                                 goto next;
    1514             :                         /* fall through */
    1515             :                 } else if (details && details->single_folio &&
    1516             :                            folio_test_pmd_mappable(details->single_folio) &&
    1517             :                            next - addr == HPAGE_PMD_SIZE && pmd_none(*pmd)) {
    1518             :                         spinlock_t *ptl = pmd_lock(tlb->mm, pmd);
    1519             :                         /*
    1520             :                          * Take and drop THP pmd lock so that we cannot return
    1521             :                          * prematurely, while zap_huge_pmd() has cleared *pmd,
    1522             :                          * but not yet decremented compound_mapcount().
    1523             :                          */
    1524             :                         spin_unlock(ptl);
    1525             :                 }
    1526             : 
    1527             :                 /*
    1528             :                  * Here there can be other concurrent MADV_DONTNEED or
    1529             :                  * trans huge page faults running, and if the pmd is
    1530             :                  * none or trans huge it can change under us. This is
    1531             :                  * because MADV_DONTNEED holds the mmap_lock in read
    1532             :                  * mode.
    1533             :                  */
    1534           0 :                 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
    1535             :                         goto next;
    1536           0 :                 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
    1537             : next:
    1538           0 :                 cond_resched();
    1539           0 :         } while (pmd++, addr = next, addr != end);
    1540             : 
    1541           0 :         return addr;
    1542             : }
    1543             : 
    1544           0 : static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
    1545             :                                 struct vm_area_struct *vma, p4d_t *p4d,
    1546             :                                 unsigned long addr, unsigned long end,
    1547             :                                 struct zap_details *details)
    1548             : {
    1549             :         pud_t *pud;
    1550             :         unsigned long next;
    1551             : 
    1552           0 :         pud = pud_offset(p4d, addr);
    1553             :         do {
    1554           0 :                 next = pud_addr_end(addr, end);
    1555           0 :                 if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
    1556             :                         if (next - addr != HPAGE_PUD_SIZE) {
    1557             :                                 mmap_assert_locked(tlb->mm);
    1558             :                                 split_huge_pud(vma, pud, addr);
    1559             :                         } else if (zap_huge_pud(tlb, vma, pud, addr))
    1560             :                                 goto next;
    1561             :                         /* fall through */
    1562             :                 }
    1563           0 :                 if (pud_none_or_clear_bad(pud))
    1564           0 :                         continue;
    1565           0 :                 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
    1566             : next:
    1567           0 :                 cond_resched();
    1568           0 :         } while (pud++, addr = next, addr != end);
    1569             : 
    1570           0 :         return addr;
    1571             : }
    1572             : 
    1573             : static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
    1574             :                                 struct vm_area_struct *vma, pgd_t *pgd,
    1575             :                                 unsigned long addr, unsigned long end,
    1576             :                                 struct zap_details *details)
    1577             : {
    1578             :         p4d_t *p4d;
    1579             :         unsigned long next;
    1580             : 
    1581             :         p4d = p4d_offset(pgd, addr);
    1582             :         do {
    1583           0 :                 next = p4d_addr_end(addr, end);
    1584           0 :                 if (p4d_none_or_clear_bad(p4d))
    1585             :                         continue;
    1586           0 :                 next = zap_pud_range(tlb, vma, p4d, addr, next, details);
    1587           0 :         } while (p4d++, addr = next, addr != end);
    1588             : 
    1589             :         return addr;
    1590             : }
    1591             : 
    1592           0 : void unmap_page_range(struct mmu_gather *tlb,
    1593             :                              struct vm_area_struct *vma,
    1594             :                              unsigned long addr, unsigned long end,
    1595             :                              struct zap_details *details)
    1596             : {
    1597             :         pgd_t *pgd;
    1598             :         unsigned long next;
    1599             : 
    1600           0 :         BUG_ON(addr >= end);
    1601           0 :         tlb_start_vma(tlb, vma);
    1602           0 :         pgd = pgd_offset(vma->vm_mm, addr);
    1603             :         do {
    1604           0 :                 next = pgd_addr_end(addr, end);
    1605           0 :                 if (pgd_none_or_clear_bad(pgd))
    1606             :                         continue;
    1607           0 :                 next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
    1608           0 :         } while (pgd++, addr = next, addr != end);
    1609           0 :         tlb_end_vma(tlb, vma);
    1610           0 : }
    1611             : 
    1612             : 
    1613           0 : static void unmap_single_vma(struct mmu_gather *tlb,
    1614             :                 struct vm_area_struct *vma, unsigned long start_addr,
    1615             :                 unsigned long end_addr,
    1616             :                 struct zap_details *details, bool mm_wr_locked)
    1617             : {
    1618           0 :         unsigned long start = max(vma->vm_start, start_addr);
    1619             :         unsigned long end;
    1620             : 
    1621           0 :         if (start >= vma->vm_end)
    1622             :                 return;
    1623           0 :         end = min(vma->vm_end, end_addr);
    1624           0 :         if (end <= vma->vm_start)
    1625             :                 return;
    1626             : 
    1627             :         if (vma->vm_file)
    1628             :                 uprobe_munmap(vma, start, end);
    1629             : 
    1630             :         if (unlikely(vma->vm_flags & VM_PFNMAP))
    1631             :                 untrack_pfn(vma, 0, 0, mm_wr_locked);
    1632             : 
    1633           0 :         if (start != end) {
    1634           0 :                 if (unlikely(is_vm_hugetlb_page(vma))) {
    1635             :                         /*
    1636             :                          * It is undesirable to test vma->vm_file as it
    1637             :                          * should be non-null for valid hugetlb area.
    1638             :                          * However, vm_file will be NULL in the error
    1639             :                          * cleanup path of mmap_region. When
    1640             :                          * hugetlbfs ->mmap method fails,
    1641             :                          * mmap_region() nullifies vma->vm_file
    1642             :                          * before calling this function to clean up.
    1643             :                          * Since no pte has actually been setup, it is
    1644             :                          * safe to do nothing in this case.
    1645             :                          */
    1646             :                         if (vma->vm_file) {
    1647             :                                 zap_flags_t zap_flags = details ?
    1648             :                                     details->zap_flags : 0;
    1649             :                                 __unmap_hugepage_range_final(tlb, vma, start, end,
    1650             :                                                              NULL, zap_flags);
    1651             :                         }
    1652             :                 } else
    1653           0 :                         unmap_page_range(tlb, vma, start, end, details);
    1654             :         }
    1655             : }
    1656             : 
    1657             : /**
    1658             :  * unmap_vmas - unmap a range of memory covered by a list of vma's
    1659             :  * @tlb: address of the caller's struct mmu_gather
    1660             :  * @mt: the maple tree
    1661             :  * @vma: the starting vma
    1662             :  * @start_addr: virtual address at which to start unmapping
    1663             :  * @end_addr: virtual address at which to end unmapping
    1664             :  *
    1665             :  * Unmap all pages in the vma list.
    1666             :  *
    1667             :  * Only addresses between `start' and `end' will be unmapped.
    1668             :  *
    1669             :  * The VMA list must be sorted in ascending virtual address order.
    1670             :  *
    1671             :  * unmap_vmas() assumes that the caller will flush the whole unmapped address
    1672             :  * range after unmap_vmas() returns.  So the only responsibility here is to
    1673             :  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
    1674             :  * drops the lock and schedules.
    1675             :  */
    1676           0 : void unmap_vmas(struct mmu_gather *tlb, struct maple_tree *mt,
    1677             :                 struct vm_area_struct *vma, unsigned long start_addr,
    1678             :                 unsigned long end_addr, bool mm_wr_locked)
    1679             : {
    1680             :         struct mmu_notifier_range range;
    1681           0 :         struct zap_details details = {
    1682             :                 .zap_flags = ZAP_FLAG_DROP_MARKER | ZAP_FLAG_UNMAP,
    1683             :                 /* Careful - we need to zap private pages too! */
    1684             :                 .even_cows = true,
    1685             :         };
    1686           0 :         MA_STATE(mas, mt, vma->vm_end, vma->vm_end);
    1687             : 
    1688             :         mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma->vm_mm,
    1689             :                                 start_addr, end_addr);
    1690             :         mmu_notifier_invalidate_range_start(&range);
    1691             :         do {
    1692           0 :                 unmap_single_vma(tlb, vma, start_addr, end_addr, &details,
    1693             :                                  mm_wr_locked);
    1694           0 :         } while ((vma = mas_find(&mas, end_addr - 1)) != NULL);
    1695           0 :         mmu_notifier_invalidate_range_end(&range);
    1696           0 : }
    1697             : 
    1698             : /**
    1699             :  * zap_page_range_single - remove user pages in a given range
    1700             :  * @vma: vm_area_struct holding the applicable pages
    1701             :  * @address: starting address of pages to zap
    1702             :  * @size: number of bytes to zap
    1703             :  * @details: details of shared cache invalidation
    1704             :  *
    1705             :  * The range must fit into one VMA.
    1706             :  */
    1707           0 : void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
    1708             :                 unsigned long size, struct zap_details *details)
    1709             : {
    1710           0 :         const unsigned long end = address + size;
    1711             :         struct mmu_notifier_range range;
    1712             :         struct mmu_gather tlb;
    1713             : 
    1714           0 :         lru_add_drain();
    1715           0 :         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
    1716             :                                 address, end);
    1717           0 :         if (is_vm_hugetlb_page(vma))
    1718             :                 adjust_range_if_pmd_sharing_possible(vma, &range.start,
    1719             :                                                      &range.end);
    1720           0 :         tlb_gather_mmu(&tlb, vma->vm_mm);
    1721           0 :         update_hiwater_rss(vma->vm_mm);
    1722           0 :         mmu_notifier_invalidate_range_start(&range);
    1723             :         /*
    1724             :          * unmap 'address-end' not 'range.start-range.end' as range
    1725             :          * could have been expanded for hugetlb pmd sharing.
    1726             :          */
    1727           0 :         unmap_single_vma(&tlb, vma, address, end, details, false);
    1728           0 :         mmu_notifier_invalidate_range_end(&range);
    1729           0 :         tlb_finish_mmu(&tlb);
    1730           0 : }
    1731             : 
    1732             : /**
    1733             :  * zap_vma_ptes - remove ptes mapping the vma
    1734             :  * @vma: vm_area_struct holding ptes to be zapped
    1735             :  * @address: starting address of pages to zap
    1736             :  * @size: number of bytes to zap
    1737             :  *
    1738             :  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
    1739             :  *
    1740             :  * The entire address range must be fully contained within the vma.
    1741             :  *
    1742             :  */
    1743           0 : void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
    1744             :                 unsigned long size)
    1745             : {
    1746           0 :         if (!range_in_vma(vma, address, address + size) ||
    1747           0 :                         !(vma->vm_flags & VM_PFNMAP))
    1748             :                 return;
    1749             : 
    1750           0 :         zap_page_range_single(vma, address, size, NULL);
    1751             : }
    1752             : EXPORT_SYMBOL_GPL(zap_vma_ptes);
    1753             : 
    1754           0 : static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr)
    1755             : {
    1756             :         pgd_t *pgd;
    1757             :         p4d_t *p4d;
    1758             :         pud_t *pud;
    1759             :         pmd_t *pmd;
    1760             : 
    1761           0 :         pgd = pgd_offset(mm, addr);
    1762           0 :         p4d = p4d_alloc(mm, pgd, addr);
    1763           0 :         if (!p4d)
    1764             :                 return NULL;
    1765           0 :         pud = pud_alloc(mm, p4d, addr);
    1766             :         if (!pud)
    1767             :                 return NULL;
    1768           0 :         pmd = pmd_alloc(mm, pud, addr);
    1769           0 :         if (!pmd)
    1770             :                 return NULL;
    1771             : 
    1772             :         VM_BUG_ON(pmd_trans_huge(*pmd));
    1773           0 :         return pmd;
    1774             : }
    1775             : 
    1776           0 : pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
    1777             :                         spinlock_t **ptl)
    1778             : {
    1779           0 :         pmd_t *pmd = walk_to_pmd(mm, addr);
    1780             : 
    1781           0 :         if (!pmd)
    1782             :                 return NULL;
    1783           0 :         return pte_alloc_map_lock(mm, pmd, addr, ptl);
    1784             : }
    1785             : 
    1786           0 : static int validate_page_before_insert(struct page *page)
    1787             : {
    1788           0 :         if (PageAnon(page) || PageSlab(page) || page_has_type(page))
    1789             :                 return -EINVAL;
    1790             :         flush_dcache_page(page);
    1791             :         return 0;
    1792             : }
    1793             : 
    1794           0 : static int insert_page_into_pte_locked(struct vm_area_struct *vma, pte_t *pte,
    1795             :                         unsigned long addr, struct page *page, pgprot_t prot)
    1796             : {
    1797           0 :         if (!pte_none(*pte))
    1798             :                 return -EBUSY;
    1799             :         /* Ok, finally just insert the thing.. */
    1800           0 :         get_page(page);
    1801           0 :         inc_mm_counter(vma->vm_mm, mm_counter_file(page));
    1802           0 :         page_add_file_rmap(page, vma, false);
    1803           0 :         set_pte_at(vma->vm_mm, addr, pte, mk_pte(page, prot));
    1804             :         return 0;
    1805             : }
    1806             : 
    1807             : /*
    1808             :  * This is the old fallback for page remapping.
    1809             :  *
    1810             :  * For historical reasons, it only allows reserved pages. Only
    1811             :  * old drivers should use this, and they needed to mark their
    1812             :  * pages reserved for the old functions anyway.
    1813             :  */
    1814           0 : static int insert_page(struct vm_area_struct *vma, unsigned long addr,
    1815             :                         struct page *page, pgprot_t prot)
    1816             : {
    1817             :         int retval;
    1818             :         pte_t *pte;
    1819             :         spinlock_t *ptl;
    1820             : 
    1821           0 :         retval = validate_page_before_insert(page);
    1822           0 :         if (retval)
    1823             :                 goto out;
    1824           0 :         retval = -ENOMEM;
    1825           0 :         pte = get_locked_pte(vma->vm_mm, addr, &ptl);
    1826           0 :         if (!pte)
    1827             :                 goto out;
    1828           0 :         retval = insert_page_into_pte_locked(vma, pte, addr, page, prot);
    1829           0 :         pte_unmap_unlock(pte, ptl);
    1830             : out:
    1831           0 :         return retval;
    1832             : }
    1833             : 
    1834             : #ifdef pte_index
    1835           0 : static int insert_page_in_batch_locked(struct vm_area_struct *vma, pte_t *pte,
    1836             :                         unsigned long addr, struct page *page, pgprot_t prot)
    1837             : {
    1838             :         int err;
    1839             : 
    1840           0 :         if (!page_count(page))
    1841             :                 return -EINVAL;
    1842           0 :         err = validate_page_before_insert(page);
    1843           0 :         if (err)
    1844             :                 return err;
    1845           0 :         return insert_page_into_pte_locked(vma, pte, addr, page, prot);
    1846             : }
    1847             : 
    1848             : /* insert_pages() amortizes the cost of spinlock operations
    1849             :  * when inserting pages in a loop. Arch *must* define pte_index.
    1850             :  */
    1851           0 : static int insert_pages(struct vm_area_struct *vma, unsigned long addr,
    1852             :                         struct page **pages, unsigned long *num, pgprot_t prot)
    1853             : {
    1854           0 :         pmd_t *pmd = NULL;
    1855             :         pte_t *start_pte, *pte;
    1856             :         spinlock_t *pte_lock;
    1857           0 :         struct mm_struct *const mm = vma->vm_mm;
    1858           0 :         unsigned long curr_page_idx = 0;
    1859           0 :         unsigned long remaining_pages_total = *num;
    1860             :         unsigned long pages_to_write_in_pmd;
    1861             :         int ret;
    1862             : more:
    1863           0 :         ret = -EFAULT;
    1864           0 :         pmd = walk_to_pmd(mm, addr);
    1865           0 :         if (!pmd)
    1866             :                 goto out;
    1867             : 
    1868           0 :         pages_to_write_in_pmd = min_t(unsigned long,
    1869             :                 remaining_pages_total, PTRS_PER_PTE - pte_index(addr));
    1870             : 
    1871             :         /* Allocate the PTE if necessary; takes PMD lock once only. */
    1872           0 :         ret = -ENOMEM;
    1873           0 :         if (pte_alloc(mm, pmd))
    1874             :                 goto out;
    1875             : 
    1876           0 :         while (pages_to_write_in_pmd) {
    1877           0 :                 int pte_idx = 0;
    1878           0 :                 const int batch_size = min_t(int, pages_to_write_in_pmd, 8);
    1879             : 
    1880           0 :                 start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock);
    1881           0 :                 for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) {
    1882           0 :                         int err = insert_page_in_batch_locked(vma, pte,
    1883           0 :                                 addr, pages[curr_page_idx], prot);
    1884           0 :                         if (unlikely(err)) {
    1885           0 :                                 pte_unmap_unlock(start_pte, pte_lock);
    1886           0 :                                 ret = err;
    1887           0 :                                 remaining_pages_total -= pte_idx;
    1888           0 :                                 goto out;
    1889             :                         }
    1890           0 :                         addr += PAGE_SIZE;
    1891           0 :                         ++curr_page_idx;
    1892             :                 }
    1893           0 :                 pte_unmap_unlock(start_pte, pte_lock);
    1894           0 :                 pages_to_write_in_pmd -= batch_size;
    1895           0 :                 remaining_pages_total -= batch_size;
    1896             :         }
    1897           0 :         if (remaining_pages_total)
    1898             :                 goto more;
    1899             :         ret = 0;
    1900             : out:
    1901           0 :         *num = remaining_pages_total;
    1902           0 :         return ret;
    1903             : }
    1904             : #endif  /* ifdef pte_index */
    1905             : 
    1906             : /**
    1907             :  * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock.
    1908             :  * @vma: user vma to map to
    1909             :  * @addr: target start user address of these pages
    1910             :  * @pages: source kernel pages
    1911             :  * @num: in: number of pages to map. out: number of pages that were *not*
    1912             :  * mapped. (0 means all pages were successfully mapped).
    1913             :  *
    1914             :  * Preferred over vm_insert_page() when inserting multiple pages.
    1915             :  *
    1916             :  * In case of error, we may have mapped a subset of the provided
    1917             :  * pages. It is the caller's responsibility to account for this case.
    1918             :  *
    1919             :  * The same restrictions apply as in vm_insert_page().
    1920             :  */
    1921           0 : int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
    1922             :                         struct page **pages, unsigned long *num)
    1923             : {
    1924             : #ifdef pte_index
    1925           0 :         const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1;
    1926             : 
    1927           0 :         if (addr < vma->vm_start || end_addr >= vma->vm_end)
    1928             :                 return -EFAULT;
    1929           0 :         if (!(vma->vm_flags & VM_MIXEDMAP)) {
    1930           0 :                 BUG_ON(mmap_read_trylock(vma->vm_mm));
    1931           0 :                 BUG_ON(vma->vm_flags & VM_PFNMAP);
    1932           0 :                 vm_flags_set(vma, VM_MIXEDMAP);
    1933             :         }
    1934             :         /* Defer page refcount checking till we're about to map that page. */
    1935           0 :         return insert_pages(vma, addr, pages, num, vma->vm_page_prot);
    1936             : #else
    1937             :         unsigned long idx = 0, pgcount = *num;
    1938             :         int err = -EINVAL;
    1939             : 
    1940             :         for (; idx < pgcount; ++idx) {
    1941             :                 err = vm_insert_page(vma, addr + (PAGE_SIZE * idx), pages[idx]);
    1942             :                 if (err)
    1943             :                         break;
    1944             :         }
    1945             :         *num = pgcount - idx;
    1946             :         return err;
    1947             : #endif  /* ifdef pte_index */
    1948             : }
    1949             : EXPORT_SYMBOL(vm_insert_pages);
    1950             : 
    1951             : /**
    1952             :  * vm_insert_page - insert single page into user vma
    1953             :  * @vma: user vma to map to
    1954             :  * @addr: target user address of this page
    1955             :  * @page: source kernel page
    1956             :  *
    1957             :  * This allows drivers to insert individual pages they've allocated
    1958             :  * into a user vma.
    1959             :  *
    1960             :  * The page has to be a nice clean _individual_ kernel allocation.
    1961             :  * If you allocate a compound page, you need to have marked it as
    1962             :  * such (__GFP_COMP), or manually just split the page up yourself
    1963             :  * (see split_page()).
    1964             :  *
    1965             :  * NOTE! Traditionally this was done with "remap_pfn_range()" which
    1966             :  * took an arbitrary page protection parameter. This doesn't allow
    1967             :  * that. Your vma protection will have to be set up correctly, which
    1968             :  * means that if you want a shared writable mapping, you'd better
    1969             :  * ask for a shared writable mapping!
    1970             :  *
    1971             :  * The page does not need to be reserved.
    1972             :  *
    1973             :  * Usually this function is called from f_op->mmap() handler
    1974             :  * under mm->mmap_lock write-lock, so it can change vma->vm_flags.
    1975             :  * Caller must set VM_MIXEDMAP on vma if it wants to call this
    1976             :  * function from other places, for example from page-fault handler.
    1977             :  *
    1978             :  * Return: %0 on success, negative error code otherwise.
    1979             :  */
    1980           0 : int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
    1981             :                         struct page *page)
    1982             : {
    1983           0 :         if (addr < vma->vm_start || addr >= vma->vm_end)
    1984             :                 return -EFAULT;
    1985           0 :         if (!page_count(page))
    1986             :                 return -EINVAL;
    1987           0 :         if (!(vma->vm_flags & VM_MIXEDMAP)) {
    1988           0 :                 BUG_ON(mmap_read_trylock(vma->vm_mm));
    1989           0 :                 BUG_ON(vma->vm_flags & VM_PFNMAP);
    1990           0 :                 vm_flags_set(vma, VM_MIXEDMAP);
    1991             :         }
    1992           0 :         return insert_page(vma, addr, page, vma->vm_page_prot);
    1993             : }
    1994             : EXPORT_SYMBOL(vm_insert_page);
    1995             : 
    1996             : /*
    1997             :  * __vm_map_pages - maps range of kernel pages into user vma
    1998             :  * @vma: user vma to map to
    1999             :  * @pages: pointer to array of source kernel pages
    2000             :  * @num: number of pages in page array
    2001             :  * @offset: user's requested vm_pgoff
    2002             :  *
    2003             :  * This allows drivers to map range of kernel pages into a user vma.
    2004             :  *
    2005             :  * Return: 0 on success and error code otherwise.
    2006             :  */
    2007           0 : static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages,
    2008             :                                 unsigned long num, unsigned long offset)
    2009             : {
    2010           0 :         unsigned long count = vma_pages(vma);
    2011           0 :         unsigned long uaddr = vma->vm_start;
    2012             :         int ret, i;
    2013             : 
    2014             :         /* Fail if the user requested offset is beyond the end of the object */
    2015           0 :         if (offset >= num)
    2016             :                 return -ENXIO;
    2017             : 
    2018             :         /* Fail if the user requested size exceeds available object size */
    2019           0 :         if (count > num - offset)
    2020             :                 return -ENXIO;
    2021             : 
    2022           0 :         for (i = 0; i < count; i++) {
    2023           0 :                 ret = vm_insert_page(vma, uaddr, pages[offset + i]);
    2024           0 :                 if (ret < 0)
    2025             :                         return ret;
    2026           0 :                 uaddr += PAGE_SIZE;
    2027             :         }
    2028             : 
    2029             :         return 0;
    2030             : }
    2031             : 
    2032             : /**
    2033             :  * vm_map_pages - maps range of kernel pages starts with non zero offset
    2034             :  * @vma: user vma to map to
    2035             :  * @pages: pointer to array of source kernel pages
    2036             :  * @num: number of pages in page array
    2037             :  *
    2038             :  * Maps an object consisting of @num pages, catering for the user's
    2039             :  * requested vm_pgoff
    2040             :  *
    2041             :  * If we fail to insert any page into the vma, the function will return
    2042             :  * immediately leaving any previously inserted pages present.  Callers
    2043             :  * from the mmap handler may immediately return the error as their caller
    2044             :  * will destroy the vma, removing any successfully inserted pages. Other
    2045             :  * callers should make their own arrangements for calling unmap_region().
    2046             :  *
    2047             :  * Context: Process context. Called by mmap handlers.
    2048             :  * Return: 0 on success and error code otherwise.
    2049             :  */
    2050           0 : int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
    2051             :                                 unsigned long num)
    2052             : {
    2053           0 :         return __vm_map_pages(vma, pages, num, vma->vm_pgoff);
    2054             : }
    2055             : EXPORT_SYMBOL(vm_map_pages);
    2056             : 
    2057             : /**
    2058             :  * vm_map_pages_zero - map range of kernel pages starts with zero offset
    2059             :  * @vma: user vma to map to
    2060             :  * @pages: pointer to array of source kernel pages
    2061             :  * @num: number of pages in page array
    2062             :  *
    2063             :  * Similar to vm_map_pages(), except that it explicitly sets the offset
    2064             :  * to 0. This function is intended for the drivers that did not consider
    2065             :  * vm_pgoff.
    2066             :  *
    2067             :  * Context: Process context. Called by mmap handlers.
    2068             :  * Return: 0 on success and error code otherwise.
    2069             :  */
    2070           0 : int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
    2071             :                                 unsigned long num)
    2072             : {
    2073           0 :         return __vm_map_pages(vma, pages, num, 0);
    2074             : }
    2075             : EXPORT_SYMBOL(vm_map_pages_zero);
    2076             : 
    2077           0 : static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
    2078             :                         pfn_t pfn, pgprot_t prot, bool mkwrite)
    2079             : {
    2080           0 :         struct mm_struct *mm = vma->vm_mm;
    2081             :         pte_t *pte, entry;
    2082             :         spinlock_t *ptl;
    2083             : 
    2084           0 :         pte = get_locked_pte(mm, addr, &ptl);
    2085           0 :         if (!pte)
    2086             :                 return VM_FAULT_OOM;
    2087           0 :         if (!pte_none(*pte)) {
    2088           0 :                 if (mkwrite) {
    2089             :                         /*
    2090             :                          * For read faults on private mappings the PFN passed
    2091             :                          * in may not match the PFN we have mapped if the
    2092             :                          * mapped PFN is a writeable COW page.  In the mkwrite
    2093             :                          * case we are creating a writable PTE for a shared
    2094             :                          * mapping and we expect the PFNs to match. If they
    2095             :                          * don't match, we are likely racing with block
    2096             :                          * allocation and mapping invalidation so just skip the
    2097             :                          * update.
    2098             :                          */
    2099           0 :                         if (pte_pfn(*pte) != pfn_t_to_pfn(pfn)) {
    2100           0 :                                 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(*pte)));
    2101             :                                 goto out_unlock;
    2102             :                         }
    2103           0 :                         entry = pte_mkyoung(*pte);
    2104           0 :                         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
    2105           0 :                         if (ptep_set_access_flags(vma, addr, pte, entry, 1))
    2106             :                                 update_mmu_cache(vma, addr, pte);
    2107             :                 }
    2108             :                 goto out_unlock;
    2109             :         }
    2110             : 
    2111             :         /* Ok, finally just insert the thing.. */
    2112           0 :         if (pfn_t_devmap(pfn))
    2113             :                 entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
    2114             :         else
    2115           0 :                 entry = pte_mkspecial(pfn_t_pte(pfn, prot));
    2116             : 
    2117           0 :         if (mkwrite) {
    2118           0 :                 entry = pte_mkyoung(entry);
    2119           0 :                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
    2120             :         }
    2121             : 
    2122           0 :         set_pte_at(mm, addr, pte, entry);
    2123             :         update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
    2124             : 
    2125             : out_unlock:
    2126           0 :         pte_unmap_unlock(pte, ptl);
    2127           0 :         return VM_FAULT_NOPAGE;
    2128             : }
    2129             : 
    2130             : /**
    2131             :  * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
    2132             :  * @vma: user vma to map to
    2133             :  * @addr: target user address of this page
    2134             :  * @pfn: source kernel pfn
    2135             :  * @pgprot: pgprot flags for the inserted page
    2136             :  *
    2137             :  * This is exactly like vmf_insert_pfn(), except that it allows drivers
    2138             :  * to override pgprot on a per-page basis.
    2139             :  *
    2140             :  * This only makes sense for IO mappings, and it makes no sense for
    2141             :  * COW mappings.  In general, using multiple vmas is preferable;
    2142             :  * vmf_insert_pfn_prot should only be used if using multiple VMAs is
    2143             :  * impractical.
    2144             :  *
    2145             :  * See vmf_insert_mixed_prot() for a discussion of the implication of using
    2146             :  * a value of @pgprot different from that of @vma->vm_page_prot.
    2147             :  *
    2148             :  * Context: Process context.  May allocate using %GFP_KERNEL.
    2149             :  * Return: vm_fault_t value.
    2150             :  */
    2151           0 : vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
    2152             :                         unsigned long pfn, pgprot_t pgprot)
    2153             : {
    2154             :         /*
    2155             :          * Technically, architectures with pte_special can avoid all these
    2156             :          * restrictions (same for remap_pfn_range).  However we would like
    2157             :          * consistency in testing and feature parity among all, so we should
    2158             :          * try to keep these invariants in place for everybody.
    2159             :          */
    2160           0 :         BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
    2161           0 :         BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
    2162             :                                                 (VM_PFNMAP|VM_MIXEDMAP));
    2163           0 :         BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
    2164           0 :         BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
    2165             : 
    2166           0 :         if (addr < vma->vm_start || addr >= vma->vm_end)
    2167             :                 return VM_FAULT_SIGBUS;
    2168             : 
    2169           0 :         if (!pfn_modify_allowed(pfn, pgprot))
    2170             :                 return VM_FAULT_SIGBUS;
    2171             : 
    2172           0 :         track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
    2173             : 
    2174           0 :         return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
    2175             :                         false);
    2176             : }
    2177             : EXPORT_SYMBOL(vmf_insert_pfn_prot);
    2178             : 
    2179             : /**
    2180             :  * vmf_insert_pfn - insert single pfn into user vma
    2181             :  * @vma: user vma to map to
    2182             :  * @addr: target user address of this page
    2183             :  * @pfn: source kernel pfn
    2184             :  *
    2185             :  * Similar to vm_insert_page, this allows drivers to insert individual pages
    2186             :  * they've allocated into a user vma. Same comments apply.
    2187             :  *
    2188             :  * This function should only be called from a vm_ops->fault handler, and
    2189             :  * in that case the handler should return the result of this function.
    2190             :  *
    2191             :  * vma cannot be a COW mapping.
    2192             :  *
    2193             :  * As this is called only for pages that do not currently exist, we
    2194             :  * do not need to flush old virtual caches or the TLB.
    2195             :  *
    2196             :  * Context: Process context.  May allocate using %GFP_KERNEL.
    2197             :  * Return: vm_fault_t value.
    2198             :  */
    2199           0 : vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
    2200             :                         unsigned long pfn)
    2201             : {
    2202           0 :         return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
    2203             : }
    2204             : EXPORT_SYMBOL(vmf_insert_pfn);
    2205             : 
    2206             : static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
    2207             : {
    2208             :         /* these checks mirror the abort conditions in vm_normal_page */
    2209           0 :         if (vma->vm_flags & VM_MIXEDMAP)
    2210             :                 return true;
    2211           0 :         if (pfn_t_devmap(pfn))
    2212             :                 return true;
    2213           0 :         if (pfn_t_special(pfn))
    2214             :                 return true;
    2215           0 :         if (is_zero_pfn(pfn_t_to_pfn(pfn)))
    2216             :                 return true;
    2217             :         return false;
    2218             : }
    2219             : 
    2220           0 : static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
    2221             :                 unsigned long addr, pfn_t pfn, pgprot_t pgprot,
    2222             :                 bool mkwrite)
    2223             : {
    2224             :         int err;
    2225             : 
    2226           0 :         BUG_ON(!vm_mixed_ok(vma, pfn));
    2227             : 
    2228           0 :         if (addr < vma->vm_start || addr >= vma->vm_end)
    2229             :                 return VM_FAULT_SIGBUS;
    2230             : 
    2231           0 :         track_pfn_insert(vma, &pgprot, pfn);
    2232             : 
    2233           0 :         if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
    2234             :                 return VM_FAULT_SIGBUS;
    2235             : 
    2236             :         /*
    2237             :          * If we don't have pte special, then we have to use the pfn_valid()
    2238             :          * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
    2239             :          * refcount the page if pfn_valid is true (hence insert_page rather
    2240             :          * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
    2241             :          * without pte special, it would there be refcounted as a normal page.
    2242             :          */
    2243             :         if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
    2244           0 :             !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
    2245             :                 struct page *page;
    2246             : 
    2247             :                 /*
    2248             :                  * At this point we are committed to insert_page()
    2249             :                  * regardless of whether the caller specified flags that
    2250             :                  * result in pfn_t_has_page() == false.
    2251             :                  */
    2252           0 :                 page = pfn_to_page(pfn_t_to_pfn(pfn));
    2253           0 :                 err = insert_page(vma, addr, page, pgprot);
    2254             :         } else {
    2255           0 :                 return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
    2256             :         }
    2257             : 
    2258           0 :         if (err == -ENOMEM)
    2259             :                 return VM_FAULT_OOM;
    2260           0 :         if (err < 0 && err != -EBUSY)
    2261             :                 return VM_FAULT_SIGBUS;
    2262             : 
    2263           0 :         return VM_FAULT_NOPAGE;
    2264             : }
    2265             : 
    2266             : /**
    2267             :  * vmf_insert_mixed_prot - insert single pfn into user vma with specified pgprot
    2268             :  * @vma: user vma to map to
    2269             :  * @addr: target user address of this page
    2270             :  * @pfn: source kernel pfn
    2271             :  * @pgprot: pgprot flags for the inserted page
    2272             :  *
    2273             :  * This is exactly like vmf_insert_mixed(), except that it allows drivers
    2274             :  * to override pgprot on a per-page basis.
    2275             :  *
    2276             :  * Typically this function should be used by drivers to set caching- and
    2277             :  * encryption bits different than those of @vma->vm_page_prot, because
    2278             :  * the caching- or encryption mode may not be known at mmap() time.
    2279             :  * This is ok as long as @vma->vm_page_prot is not used by the core vm
    2280             :  * to set caching and encryption bits for those vmas (except for COW pages).
    2281             :  * This is ensured by core vm only modifying these page table entries using
    2282             :  * functions that don't touch caching- or encryption bits, using pte_modify()
    2283             :  * if needed. (See for example mprotect()).
    2284             :  * Also when new page-table entries are created, this is only done using the
    2285             :  * fault() callback, and never using the value of vma->vm_page_prot,
    2286             :  * except for page-table entries that point to anonymous pages as the result
    2287             :  * of COW.
    2288             :  *
    2289             :  * Context: Process context.  May allocate using %GFP_KERNEL.
    2290             :  * Return: vm_fault_t value.
    2291             :  */
    2292           0 : vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr,
    2293             :                                  pfn_t pfn, pgprot_t pgprot)
    2294             : {
    2295           0 :         return __vm_insert_mixed(vma, addr, pfn, pgprot, false);
    2296             : }
    2297             : EXPORT_SYMBOL(vmf_insert_mixed_prot);
    2298             : 
    2299           0 : vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
    2300             :                 pfn_t pfn)
    2301             : {
    2302           0 :         return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, false);
    2303             : }
    2304             : EXPORT_SYMBOL(vmf_insert_mixed);
    2305             : 
    2306             : /*
    2307             :  *  If the insertion of PTE failed because someone else already added a
    2308             :  *  different entry in the mean time, we treat that as success as we assume
    2309             :  *  the same entry was actually inserted.
    2310             :  */
    2311           0 : vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
    2312             :                 unsigned long addr, pfn_t pfn)
    2313             : {
    2314           0 :         return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, true);
    2315             : }
    2316             : EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
    2317             : 
    2318             : /*
    2319             :  * maps a range of physical memory into the requested pages. the old
    2320             :  * mappings are removed. any references to nonexistent pages results
    2321             :  * in null mappings (currently treated as "copy-on-access")
    2322             :  */
    2323           0 : static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
    2324             :                         unsigned long addr, unsigned long end,
    2325             :                         unsigned long pfn, pgprot_t prot)
    2326             : {
    2327             :         pte_t *pte, *mapped_pte;
    2328             :         spinlock_t *ptl;
    2329           0 :         int err = 0;
    2330             : 
    2331           0 :         mapped_pte = pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
    2332           0 :         if (!pte)
    2333             :                 return -ENOMEM;
    2334             :         arch_enter_lazy_mmu_mode();
    2335             :         do {
    2336           0 :                 BUG_ON(!pte_none(*pte));
    2337           0 :                 if (!pfn_modify_allowed(pfn, prot)) {
    2338             :                         err = -EACCES;
    2339             :                         break;
    2340             :                 }
    2341           0 :                 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
    2342           0 :                 pfn++;
    2343           0 :         } while (pte++, addr += PAGE_SIZE, addr != end);
    2344             :         arch_leave_lazy_mmu_mode();
    2345           0 :         pte_unmap_unlock(mapped_pte, ptl);
    2346           0 :         return err;
    2347             : }
    2348             : 
    2349           0 : static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
    2350             :                         unsigned long addr, unsigned long end,
    2351             :                         unsigned long pfn, pgprot_t prot)
    2352             : {
    2353             :         pmd_t *pmd;
    2354             :         unsigned long next;
    2355             :         int err;
    2356             : 
    2357           0 :         pfn -= addr >> PAGE_SHIFT;
    2358           0 :         pmd = pmd_alloc(mm, pud, addr);
    2359           0 :         if (!pmd)
    2360             :                 return -ENOMEM;
    2361             :         VM_BUG_ON(pmd_trans_huge(*pmd));
    2362             :         do {
    2363           0 :                 next = pmd_addr_end(addr, end);
    2364           0 :                 err = remap_pte_range(mm, pmd, addr, next,
    2365           0 :                                 pfn + (addr >> PAGE_SHIFT), prot);
    2366           0 :                 if (err)
    2367             :                         return err;
    2368           0 :         } while (pmd++, addr = next, addr != end);
    2369             :         return 0;
    2370             : }
    2371             : 
    2372             : static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
    2373             :                         unsigned long addr, unsigned long end,
    2374             :                         unsigned long pfn, pgprot_t prot)
    2375             : {
    2376             :         pud_t *pud;
    2377             :         unsigned long next;
    2378             :         int err;
    2379             : 
    2380           0 :         pfn -= addr >> PAGE_SHIFT;
    2381           0 :         pud = pud_alloc(mm, p4d, addr);
    2382             :         if (!pud)
    2383             :                 return -ENOMEM;
    2384             :         do {
    2385           0 :                 next = pud_addr_end(addr, end);
    2386           0 :                 err = remap_pmd_range(mm, pud, addr, next,
    2387             :                                 pfn + (addr >> PAGE_SHIFT), prot);
    2388           0 :                 if (err)
    2389             :                         return err;
    2390           0 :         } while (pud++, addr = next, addr != end);
    2391             :         return 0;
    2392             : }
    2393             : 
    2394           0 : static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
    2395             :                         unsigned long addr, unsigned long end,
    2396             :                         unsigned long pfn, pgprot_t prot)
    2397             : {
    2398             :         p4d_t *p4d;
    2399             :         unsigned long next;
    2400             :         int err;
    2401             : 
    2402           0 :         pfn -= addr >> PAGE_SHIFT;
    2403           0 :         p4d = p4d_alloc(mm, pgd, addr);
    2404           0 :         if (!p4d)
    2405             :                 return -ENOMEM;
    2406             :         do {
    2407           0 :                 next = p4d_addr_end(addr, end);
    2408           0 :                 err = remap_pud_range(mm, p4d, addr, next,
    2409             :                                 pfn + (addr >> PAGE_SHIFT), prot);
    2410           0 :                 if (err)
    2411             :                         return err;
    2412           0 :         } while (p4d++, addr = next, addr != end);
    2413           0 :         return 0;
    2414             : }
    2415             : 
    2416             : /*
    2417             :  * Variant of remap_pfn_range that does not call track_pfn_remap.  The caller
    2418             :  * must have pre-validated the caching bits of the pgprot_t.
    2419             :  */
    2420           0 : int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
    2421             :                 unsigned long pfn, unsigned long size, pgprot_t prot)
    2422             : {
    2423             :         pgd_t *pgd;
    2424             :         unsigned long next;
    2425           0 :         unsigned long end = addr + PAGE_ALIGN(size);
    2426           0 :         struct mm_struct *mm = vma->vm_mm;
    2427             :         int err;
    2428             : 
    2429           0 :         if (WARN_ON_ONCE(!PAGE_ALIGNED(addr)))
    2430             :                 return -EINVAL;
    2431             : 
    2432             :         /*
    2433             :          * Physically remapped pages are special. Tell the
    2434             :          * rest of the world about it:
    2435             :          *   VM_IO tells people not to look at these pages
    2436             :          *      (accesses can have side effects).
    2437             :          *   VM_PFNMAP tells the core MM that the base pages are just
    2438             :          *      raw PFN mappings, and do not have a "struct page" associated
    2439             :          *      with them.
    2440             :          *   VM_DONTEXPAND
    2441             :          *      Disable vma merging and expanding with mremap().
    2442             :          *   VM_DONTDUMP
    2443             :          *      Omit vma from core dump, even when VM_IO turned off.
    2444             :          *
    2445             :          * There's a horrible special case to handle copy-on-write
    2446             :          * behaviour that some programs depend on. We mark the "original"
    2447             :          * un-COW'ed pages by matching them up with "vma->vm_pgoff".
    2448             :          * See vm_normal_page() for details.
    2449             :          */
    2450           0 :         if (is_cow_mapping(vma->vm_flags)) {
    2451           0 :                 if (addr != vma->vm_start || end != vma->vm_end)
    2452             :                         return -EINVAL;
    2453           0 :                 vma->vm_pgoff = pfn;
    2454             :         }
    2455             : 
    2456           0 :         vm_flags_set(vma, VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP);
    2457             : 
    2458           0 :         BUG_ON(addr >= end);
    2459           0 :         pfn -= addr >> PAGE_SHIFT;
    2460           0 :         pgd = pgd_offset(mm, addr);
    2461           0 :         flush_cache_range(vma, addr, end);
    2462             :         do {
    2463           0 :                 next = pgd_addr_end(addr, end);
    2464           0 :                 err = remap_p4d_range(mm, pgd, addr, next,
    2465           0 :                                 pfn + (addr >> PAGE_SHIFT), prot);
    2466           0 :                 if (err)
    2467             :                         return err;
    2468           0 :         } while (pgd++, addr = next, addr != end);
    2469             : 
    2470             :         return 0;
    2471             : }
    2472             : 
    2473             : /**
    2474             :  * remap_pfn_range - remap kernel memory to userspace
    2475             :  * @vma: user vma to map to
    2476             :  * @addr: target page aligned user address to start at
    2477             :  * @pfn: page frame number of kernel physical memory address
    2478             :  * @size: size of mapping area
    2479             :  * @prot: page protection flags for this mapping
    2480             :  *
    2481             :  * Note: this is only safe if the mm semaphore is held when called.
    2482             :  *
    2483             :  * Return: %0 on success, negative error code otherwise.
    2484             :  */
    2485           0 : int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
    2486             :                     unsigned long pfn, unsigned long size, pgprot_t prot)
    2487             : {
    2488             :         int err;
    2489             : 
    2490           0 :         err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
    2491             :         if (err)
    2492             :                 return -EINVAL;
    2493             : 
    2494           0 :         err = remap_pfn_range_notrack(vma, addr, pfn, size, prot);
    2495             :         if (err)
    2496             :                 untrack_pfn(vma, pfn, PAGE_ALIGN(size), true);
    2497             :         return err;
    2498             : }
    2499             : EXPORT_SYMBOL(remap_pfn_range);
    2500             : 
    2501             : /**
    2502             :  * vm_iomap_memory - remap memory to userspace
    2503             :  * @vma: user vma to map to
    2504             :  * @start: start of the physical memory to be mapped
    2505             :  * @len: size of area
    2506             :  *
    2507             :  * This is a simplified io_remap_pfn_range() for common driver use. The
    2508             :  * driver just needs to give us the physical memory range to be mapped,
    2509             :  * we'll figure out the rest from the vma information.
    2510             :  *
    2511             :  * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
    2512             :  * whatever write-combining details or similar.
    2513             :  *
    2514             :  * Return: %0 on success, negative error code otherwise.
    2515             :  */
    2516           0 : int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
    2517             : {
    2518             :         unsigned long vm_len, pfn, pages;
    2519             : 
    2520             :         /* Check that the physical memory area passed in looks valid */
    2521           0 :         if (start + len < start)
    2522             :                 return -EINVAL;
    2523             :         /*
    2524             :          * You *really* shouldn't map things that aren't page-aligned,
    2525             :          * but we've historically allowed it because IO memory might
    2526             :          * just have smaller alignment.
    2527             :          */
    2528           0 :         len += start & ~PAGE_MASK;
    2529           0 :         pfn = start >> PAGE_SHIFT;
    2530           0 :         pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
    2531           0 :         if (pfn + pages < pfn)
    2532             :                 return -EINVAL;
    2533             : 
    2534             :         /* We start the mapping 'vm_pgoff' pages into the area */
    2535           0 :         if (vma->vm_pgoff > pages)
    2536             :                 return -EINVAL;
    2537           0 :         pfn += vma->vm_pgoff;
    2538           0 :         pages -= vma->vm_pgoff;
    2539             : 
    2540             :         /* Can we fit all of the mapping? */
    2541           0 :         vm_len = vma->vm_end - vma->vm_start;
    2542           0 :         if (vm_len >> PAGE_SHIFT > pages)
    2543             :                 return -EINVAL;
    2544             : 
    2545             :         /* Ok, let it rip */
    2546           0 :         return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
    2547             : }
    2548             : EXPORT_SYMBOL(vm_iomap_memory);
    2549             : 
    2550           0 : static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
    2551             :                                      unsigned long addr, unsigned long end,
    2552             :                                      pte_fn_t fn, void *data, bool create,
    2553             :                                      pgtbl_mod_mask *mask)
    2554             : {
    2555             :         pte_t *pte, *mapped_pte;
    2556           0 :         int err = 0;
    2557             :         spinlock_t *ptl;
    2558             : 
    2559           0 :         if (create) {
    2560           0 :                 mapped_pte = pte = (mm == &init_mm) ?
    2561           0 :                         pte_alloc_kernel_track(pmd, addr, mask) :
    2562           0 :                         pte_alloc_map_lock(mm, pmd, addr, &ptl);
    2563           0 :                 if (!pte)
    2564             :                         return -ENOMEM;
    2565             :         } else {
    2566             :                 mapped_pte = pte = (mm == &init_mm) ?
    2567           0 :                         pte_offset_kernel(pmd, addr) :
    2568           0 :                         pte_offset_map_lock(mm, pmd, addr, &ptl);
    2569             :         }
    2570             : 
    2571           0 :         BUG_ON(pmd_huge(*pmd));
    2572             : 
    2573             :         arch_enter_lazy_mmu_mode();
    2574             : 
    2575           0 :         if (fn) {
    2576             :                 do {
    2577           0 :                         if (create || !pte_none(*pte)) {
    2578           0 :                                 err = fn(pte++, addr, data);
    2579           0 :                                 if (err)
    2580             :                                         break;
    2581             :                         }
    2582           0 :                 } while (addr += PAGE_SIZE, addr != end);
    2583             :         }
    2584           0 :         *mask |= PGTBL_PTE_MODIFIED;
    2585             : 
    2586             :         arch_leave_lazy_mmu_mode();
    2587             : 
    2588           0 :         if (mm != &init_mm)
    2589           0 :                 pte_unmap_unlock(mapped_pte, ptl);
    2590             :         return err;
    2591             : }
    2592             : 
    2593           0 : static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
    2594             :                                      unsigned long addr, unsigned long end,
    2595             :                                      pte_fn_t fn, void *data, bool create,
    2596             :                                      pgtbl_mod_mask *mask)
    2597             : {
    2598             :         pmd_t *pmd;
    2599             :         unsigned long next;
    2600           0 :         int err = 0;
    2601             : 
    2602           0 :         BUG_ON(pud_huge(*pud));
    2603             : 
    2604           0 :         if (create) {
    2605           0 :                 pmd = pmd_alloc_track(mm, pud, addr, mask);
    2606           0 :                 if (!pmd)
    2607             :                         return -ENOMEM;
    2608             :         } else {
    2609           0 :                 pmd = pmd_offset(pud, addr);
    2610             :         }
    2611             :         do {
    2612           0 :                 next = pmd_addr_end(addr, end);
    2613           0 :                 if (pmd_none(*pmd) && !create)
    2614           0 :                         continue;
    2615           0 :                 if (WARN_ON_ONCE(pmd_leaf(*pmd)))
    2616             :                         return -EINVAL;
    2617           0 :                 if (!pmd_none(*pmd) && WARN_ON_ONCE(pmd_bad(*pmd))) {
    2618           0 :                         if (!create)
    2619           0 :                                 continue;
    2620           0 :                         pmd_clear_bad(pmd);
    2621             :                 }
    2622           0 :                 err = apply_to_pte_range(mm, pmd, addr, next,
    2623             :                                          fn, data, create, mask);
    2624           0 :                 if (err)
    2625             :                         break;
    2626           0 :         } while (pmd++, addr = next, addr != end);
    2627             : 
    2628             :         return err;
    2629             : }
    2630             : 
    2631           0 : static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
    2632             :                                      unsigned long addr, unsigned long end,
    2633             :                                      pte_fn_t fn, void *data, bool create,
    2634             :                                      pgtbl_mod_mask *mask)
    2635             : {
    2636             :         pud_t *pud;
    2637             :         unsigned long next;
    2638           0 :         int err = 0;
    2639             : 
    2640           0 :         if (create) {
    2641           0 :                 pud = pud_alloc_track(mm, p4d, addr, mask);
    2642           0 :                 if (!pud)
    2643             :                         return -ENOMEM;
    2644             :         } else {
    2645             :                 pud = pud_offset(p4d, addr);
    2646             :         }
    2647             :         do {
    2648           0 :                 next = pud_addr_end(addr, end);
    2649           0 :                 if (pud_none(*pud) && !create)
    2650           0 :                         continue;
    2651           0 :                 if (WARN_ON_ONCE(pud_leaf(*pud)))
    2652             :                         return -EINVAL;
    2653           0 :                 if (!pud_none(*pud) && WARN_ON_ONCE(pud_bad(*pud))) {
    2654           0 :                         if (!create)
    2655           0 :                                 continue;
    2656             :                         pud_clear_bad(pud);
    2657             :                 }
    2658           0 :                 err = apply_to_pmd_range(mm, pud, addr, next,
    2659             :                                          fn, data, create, mask);
    2660           0 :                 if (err)
    2661             :                         break;
    2662           0 :         } while (pud++, addr = next, addr != end);
    2663             : 
    2664             :         return err;
    2665             : }
    2666             : 
    2667             : static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
    2668             :                                      unsigned long addr, unsigned long end,
    2669             :                                      pte_fn_t fn, void *data, bool create,
    2670             :                                      pgtbl_mod_mask *mask)
    2671             : {
    2672             :         p4d_t *p4d;
    2673             :         unsigned long next;
    2674           0 :         int err = 0;
    2675             : 
    2676           0 :         if (create) {
    2677           0 :                 p4d = p4d_alloc_track(mm, pgd, addr, mask);
    2678           0 :                 if (!p4d)
    2679             :                         return -ENOMEM;
    2680             :         } else {
    2681             :                 p4d = p4d_offset(pgd, addr);
    2682             :         }
    2683             :         do {
    2684           0 :                 next = p4d_addr_end(addr, end);
    2685           0 :                 if (p4d_none(*p4d) && !create)
    2686             :                         continue;
    2687           0 :                 if (WARN_ON_ONCE(p4d_leaf(*p4d)))
    2688             :                         return -EINVAL;
    2689           0 :                 if (!p4d_none(*p4d) && WARN_ON_ONCE(p4d_bad(*p4d))) {
    2690             :                         if (!create)
    2691             :                                 continue;
    2692             :                         p4d_clear_bad(p4d);
    2693             :                 }
    2694           0 :                 err = apply_to_pud_range(mm, p4d, addr, next,
    2695             :                                          fn, data, create, mask);
    2696             :                 if (err)
    2697             :                         break;
    2698             :         } while (p4d++, addr = next, addr != end);
    2699             : 
    2700             :         return err;
    2701             : }
    2702             : 
    2703           0 : static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr,
    2704             :                                  unsigned long size, pte_fn_t fn,
    2705             :                                  void *data, bool create)
    2706             : {
    2707             :         pgd_t *pgd;
    2708           0 :         unsigned long start = addr, next;
    2709           0 :         unsigned long end = addr + size;
    2710           0 :         pgtbl_mod_mask mask = 0;
    2711           0 :         int err = 0;
    2712             : 
    2713           0 :         if (WARN_ON(addr >= end))
    2714             :                 return -EINVAL;
    2715             : 
    2716           0 :         pgd = pgd_offset(mm, addr);
    2717             :         do {
    2718           0 :                 next = pgd_addr_end(addr, end);
    2719           0 :                 if (pgd_none(*pgd) && !create)
    2720             :                         continue;
    2721           0 :                 if (WARN_ON_ONCE(pgd_leaf(*pgd)))
    2722             :                         return -EINVAL;
    2723           0 :                 if (!pgd_none(*pgd) && WARN_ON_ONCE(pgd_bad(*pgd))) {
    2724             :                         if (!create)
    2725             :                                 continue;
    2726             :                         pgd_clear_bad(pgd);
    2727             :                 }
    2728           0 :                 err = apply_to_p4d_range(mm, pgd, addr, next,
    2729             :                                          fn, data, create, &mask);
    2730           0 :                 if (err)
    2731             :                         break;
    2732           0 :         } while (pgd++, addr = next, addr != end);
    2733             : 
    2734             :         if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
    2735             :                 arch_sync_kernel_mappings(start, start + size);
    2736             : 
    2737             :         return err;
    2738             : }
    2739             : 
    2740             : /*
    2741             :  * Scan a region of virtual memory, filling in page tables as necessary
    2742             :  * and calling a provided function on each leaf page table.
    2743             :  */
    2744           0 : int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
    2745             :                         unsigned long size, pte_fn_t fn, void *data)
    2746             : {
    2747           0 :         return __apply_to_page_range(mm, addr, size, fn, data, true);
    2748             : }
    2749             : EXPORT_SYMBOL_GPL(apply_to_page_range);
    2750             : 
    2751             : /*
    2752             :  * Scan a region of virtual memory, calling a provided function on
    2753             :  * each leaf page table where it exists.
    2754             :  *
    2755             :  * Unlike apply_to_page_range, this does _not_ fill in page tables
    2756             :  * where they are absent.
    2757             :  */
    2758           0 : int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr,
    2759             :                                  unsigned long size, pte_fn_t fn, void *data)
    2760             : {
    2761           0 :         return __apply_to_page_range(mm, addr, size, fn, data, false);
    2762             : }
    2763             : EXPORT_SYMBOL_GPL(apply_to_existing_page_range);
    2764             : 
    2765             : /*
    2766             :  * handle_pte_fault chooses page fault handler according to an entry which was
    2767             :  * read non-atomically.  Before making any commitment, on those architectures
    2768             :  * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
    2769             :  * parts, do_swap_page must check under lock before unmapping the pte and
    2770             :  * proceeding (but do_wp_page is only called after already making such a check;
    2771             :  * and do_anonymous_page can safely check later on).
    2772             :  */
    2773             : static inline int pte_unmap_same(struct vm_fault *vmf)
    2774             : {
    2775           0 :         int same = 1;
    2776             : #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION)
    2777             :         if (sizeof(pte_t) > sizeof(unsigned long)) {
    2778             :                 spinlock_t *ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
    2779             :                 spin_lock(ptl);
    2780             :                 same = pte_same(*vmf->pte, vmf->orig_pte);
    2781             :                 spin_unlock(ptl);
    2782             :         }
    2783             : #endif
    2784             :         pte_unmap(vmf->pte);
    2785           0 :         vmf->pte = NULL;
    2786             :         return same;
    2787             : }
    2788             : 
    2789             : /*
    2790             :  * Return:
    2791             :  *      0:              copied succeeded
    2792             :  *      -EHWPOISON:     copy failed due to hwpoison in source page
    2793             :  *      -EAGAIN:        copied failed (some other reason)
    2794             :  */
    2795           0 : static inline int __wp_page_copy_user(struct page *dst, struct page *src,
    2796             :                                       struct vm_fault *vmf)
    2797             : {
    2798             :         int ret;
    2799             :         void *kaddr;
    2800             :         void __user *uaddr;
    2801           0 :         bool locked = false;
    2802           0 :         struct vm_area_struct *vma = vmf->vma;
    2803           0 :         struct mm_struct *mm = vma->vm_mm;
    2804           0 :         unsigned long addr = vmf->address;
    2805             : 
    2806           0 :         if (likely(src)) {
    2807           0 :                 if (copy_mc_user_highpage(dst, src, addr, vma)) {
    2808             :                         memory_failure_queue(page_to_pfn(src), 0);
    2809             :                         return -EHWPOISON;
    2810             :                 }
    2811           0 :                 return 0;
    2812             :         }
    2813             : 
    2814             :         /*
    2815             :          * If the source page was a PFN mapping, we don't have
    2816             :          * a "struct page" for it. We do a best-effort copy by
    2817             :          * just copying from the original user address. If that
    2818             :          * fails, we just zero-fill it. Live with it.
    2819             :          */
    2820           0 :         kaddr = kmap_atomic(dst);
    2821           0 :         uaddr = (void __user *)(addr & PAGE_MASK);
    2822             : 
    2823             :         /*
    2824             :          * On architectures with software "accessed" bits, we would
    2825             :          * take a double page fault, so mark it accessed here.
    2826             :          */
    2827           0 :         if (!arch_has_hw_pte_young() && !pte_young(vmf->orig_pte)) {
    2828             :                 pte_t entry;
    2829             : 
    2830           0 :                 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
    2831           0 :                 locked = true;
    2832           0 :                 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
    2833             :                         /*
    2834             :                          * Other thread has already handled the fault
    2835             :                          * and update local tlb only
    2836             :                          */
    2837           0 :                         update_mmu_tlb(vma, addr, vmf->pte);
    2838           0 :                         ret = -EAGAIN;
    2839           0 :                         goto pte_unlock;
    2840             :                 }
    2841             : 
    2842           0 :                 entry = pte_mkyoung(vmf->orig_pte);
    2843           0 :                 if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0))
    2844             :                         update_mmu_cache(vma, addr, vmf->pte);
    2845             :         }
    2846             : 
    2847             :         /*
    2848             :          * This really shouldn't fail, because the page is there
    2849             :          * in the page tables. But it might just be unreadable,
    2850             :          * in which case we just give up and fill the result with
    2851             :          * zeroes.
    2852             :          */
    2853           0 :         if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
    2854           0 :                 if (locked)
    2855             :                         goto warn;
    2856             : 
    2857             :                 /* Re-validate under PTL if the page is still mapped */
    2858           0 :                 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
    2859           0 :                 locked = true;
    2860           0 :                 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
    2861             :                         /* The PTE changed under us, update local tlb */
    2862             :                         update_mmu_tlb(vma, addr, vmf->pte);
    2863             :                         ret = -EAGAIN;
    2864             :                         goto pte_unlock;
    2865             :                 }
    2866             : 
    2867             :                 /*
    2868             :                  * The same page can be mapped back since last copy attempt.
    2869             :                  * Try to copy again under PTL.
    2870             :                  */
    2871           0 :                 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
    2872             :                         /*
    2873             :                          * Give a warn in case there can be some obscure
    2874             :                          * use-case
    2875             :                          */
    2876             : warn:
    2877           0 :                         WARN_ON_ONCE(1);
    2878           0 :                         clear_page(kaddr);
    2879             :                 }
    2880             :         }
    2881             : 
    2882             :         ret = 0;
    2883             : 
    2884             : pte_unlock:
    2885           0 :         if (locked)
    2886           0 :                 pte_unmap_unlock(vmf->pte, vmf->ptl);
    2887           0 :         kunmap_atomic(kaddr);
    2888           0 :         flush_dcache_page(dst);
    2889             : 
    2890           0 :         return ret;
    2891             : }
    2892             : 
    2893             : static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
    2894             : {
    2895           0 :         struct file *vm_file = vma->vm_file;
    2896             : 
    2897           0 :         if (vm_file)
    2898           0 :                 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
    2899             : 
    2900             :         /*
    2901             :          * Special mappings (e.g. VDSO) do not have any file so fake
    2902             :          * a default GFP_KERNEL for them.
    2903             :          */
    2904             :         return GFP_KERNEL;
    2905             : }
    2906             : 
    2907             : /*
    2908             :  * Notify the address space that the page is about to become writable so that
    2909             :  * it can prohibit this or wait for the page to get into an appropriate state.
    2910             :  *
    2911             :  * We do this without the lock held, so that it can sleep if it needs to.
    2912             :  */
    2913           0 : static vm_fault_t do_page_mkwrite(struct vm_fault *vmf)
    2914             : {
    2915             :         vm_fault_t ret;
    2916           0 :         struct page *page = vmf->page;
    2917           0 :         unsigned int old_flags = vmf->flags;
    2918             : 
    2919           0 :         vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
    2920             : 
    2921           0 :         if (vmf->vma->vm_file &&
    2922           0 :             IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host))
    2923             :                 return VM_FAULT_SIGBUS;
    2924             : 
    2925           0 :         ret = vmf->vma->vm_ops->page_mkwrite(vmf);
    2926             :         /* Restore original flags so that caller is not surprised */
    2927           0 :         vmf->flags = old_flags;
    2928           0 :         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
    2929             :                 return ret;
    2930           0 :         if (unlikely(!(ret & VM_FAULT_LOCKED))) {
    2931           0 :                 lock_page(page);
    2932           0 :                 if (!page->mapping) {
    2933           0 :                         unlock_page(page);
    2934           0 :                         return 0; /* retry */
    2935             :                 }
    2936           0 :                 ret |= VM_FAULT_LOCKED;
    2937             :         } else
    2938             :                 VM_BUG_ON_PAGE(!PageLocked(page), page);
    2939             :         return ret;
    2940             : }
    2941             : 
    2942             : /*
    2943             :  * Handle dirtying of a page in shared file mapping on a write fault.
    2944             :  *
    2945             :  * The function expects the page to be locked and unlocks it.
    2946             :  */
    2947           0 : static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf)
    2948             : {
    2949           0 :         struct vm_area_struct *vma = vmf->vma;
    2950             :         struct address_space *mapping;
    2951           0 :         struct page *page = vmf->page;
    2952             :         bool dirtied;
    2953           0 :         bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
    2954             : 
    2955           0 :         dirtied = set_page_dirty(page);
    2956             :         VM_BUG_ON_PAGE(PageAnon(page), page);
    2957             :         /*
    2958             :          * Take a local copy of the address_space - page.mapping may be zeroed
    2959             :          * by truncate after unlock_page().   The address_space itself remains
    2960             :          * pinned by vma->vm_file's reference.  We rely on unlock_page()'s
    2961             :          * release semantics to prevent the compiler from undoing this copying.
    2962             :          */
    2963           0 :         mapping = page_rmapping(page);
    2964           0 :         unlock_page(page);
    2965             : 
    2966           0 :         if (!page_mkwrite)
    2967           0 :                 file_update_time(vma->vm_file);
    2968             : 
    2969             :         /*
    2970             :          * Throttle page dirtying rate down to writeback speed.
    2971             :          *
    2972             :          * mapping may be NULL here because some device drivers do not
    2973             :          * set page.mapping but still dirty their pages
    2974             :          *
    2975             :          * Drop the mmap_lock before waiting on IO, if we can. The file
    2976             :          * is pinning the mapping, as per above.
    2977             :          */
    2978           0 :         if ((dirtied || page_mkwrite) && mapping) {
    2979             :                 struct file *fpin;
    2980             : 
    2981           0 :                 fpin = maybe_unlock_mmap_for_io(vmf, NULL);
    2982           0 :                 balance_dirty_pages_ratelimited(mapping);
    2983           0 :                 if (fpin) {
    2984           0 :                         fput(fpin);
    2985           0 :                         return VM_FAULT_COMPLETED;
    2986             :                 }
    2987             :         }
    2988             : 
    2989             :         return 0;
    2990             : }
    2991             : 
    2992             : /*
    2993             :  * Handle write page faults for pages that can be reused in the current vma
    2994             :  *
    2995             :  * This can happen either due to the mapping being with the VM_SHARED flag,
    2996             :  * or due to us being the last reference standing to the page. In either
    2997             :  * case, all we need to do here is to mark the page as writable and update
    2998             :  * any related book-keeping.
    2999             :  */
    3000           0 : static inline void wp_page_reuse(struct vm_fault *vmf)
    3001             :         __releases(vmf->ptl)
    3002             : {
    3003           0 :         struct vm_area_struct *vma = vmf->vma;
    3004           0 :         struct page *page = vmf->page;
    3005             :         pte_t entry;
    3006             : 
    3007             :         VM_BUG_ON(!(vmf->flags & FAULT_FLAG_WRITE));
    3008             :         VM_BUG_ON(page && PageAnon(page) && !PageAnonExclusive(page));
    3009             : 
    3010             :         /*
    3011             :          * Clear the pages cpupid information as the existing
    3012             :          * information potentially belongs to a now completely
    3013             :          * unrelated process.
    3014             :          */
    3015             :         if (page)
    3016             :                 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
    3017             : 
    3018           0 :         flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
    3019           0 :         entry = pte_mkyoung(vmf->orig_pte);
    3020           0 :         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
    3021           0 :         if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
    3022             :                 update_mmu_cache(vma, vmf->address, vmf->pte);
    3023           0 :         pte_unmap_unlock(vmf->pte, vmf->ptl);
    3024           0 :         count_vm_event(PGREUSE);
    3025           0 : }
    3026             : 
    3027             : /*
    3028             :  * Handle the case of a page which we actually need to copy to a new page,
    3029             :  * either due to COW or unsharing.
    3030             :  *
    3031             :  * Called with mmap_lock locked and the old page referenced, but
    3032             :  * without the ptl held.
    3033             :  *
    3034             :  * High level logic flow:
    3035             :  *
    3036             :  * - Allocate a page, copy the content of the old page to the new one.
    3037             :  * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
    3038             :  * - Take the PTL. If the pte changed, bail out and release the allocated page
    3039             :  * - If the pte is still the way we remember it, update the page table and all
    3040             :  *   relevant references. This includes dropping the reference the page-table
    3041             :  *   held to the old page, as well as updating the rmap.
    3042             :  * - In any case, unlock the PTL and drop the reference we took to the old page.
    3043             :  */
    3044           0 : static vm_fault_t wp_page_copy(struct vm_fault *vmf)
    3045             : {
    3046           0 :         const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
    3047           0 :         struct vm_area_struct *vma = vmf->vma;
    3048           0 :         struct mm_struct *mm = vma->vm_mm;
    3049           0 :         struct folio *old_folio = NULL;
    3050           0 :         struct folio *new_folio = NULL;
    3051             :         pte_t entry;
    3052           0 :         int page_copied = 0;
    3053             :         struct mmu_notifier_range range;
    3054             :         int ret;
    3055             : 
    3056             :         delayacct_wpcopy_start();
    3057             : 
    3058           0 :         if (vmf->page)
    3059           0 :                 old_folio = page_folio(vmf->page);
    3060           0 :         if (unlikely(anon_vma_prepare(vma)))
    3061             :                 goto oom;
    3062             : 
    3063           0 :         if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
    3064           0 :                 new_folio = vma_alloc_zeroed_movable_folio(vma, vmf->address);
    3065           0 :                 if (!new_folio)
    3066             :                         goto oom;
    3067             :         } else {
    3068           0 :                 new_folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma,
    3069             :                                 vmf->address, false);
    3070           0 :                 if (!new_folio)
    3071             :                         goto oom;
    3072             : 
    3073           0 :                 ret = __wp_page_copy_user(&new_folio->page, vmf->page, vmf);
    3074           0 :                 if (ret) {
    3075             :                         /*
    3076             :                          * COW failed, if the fault was solved by other,
    3077             :                          * it's fine. If not, userspace would re-fault on
    3078             :                          * the same address and we will handle the fault
    3079             :                          * from the second attempt.
    3080             :                          * The -EHWPOISON case will not be retried.
    3081             :                          */
    3082           0 :                         folio_put(new_folio);
    3083           0 :                         if (old_folio)
    3084             :                                 folio_put(old_folio);
    3085             : 
    3086             :                         delayacct_wpcopy_end();
    3087           0 :                         return ret == -EHWPOISON ? VM_FAULT_HWPOISON : 0;
    3088             :                 }
    3089             :                 kmsan_copy_page_meta(&new_folio->page, vmf->page);
    3090             :         }
    3091             : 
    3092           0 :         if (mem_cgroup_charge(new_folio, mm, GFP_KERNEL))
    3093             :                 goto oom_free_new;
    3094           0 :         cgroup_throttle_swaprate(&new_folio->page, GFP_KERNEL);
    3095             : 
    3096           0 :         __folio_mark_uptodate(new_folio);
    3097             : 
    3098           0 :         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm,
    3099             :                                 vmf->address & PAGE_MASK,
    3100             :                                 (vmf->address & PAGE_MASK) + PAGE_SIZE);
    3101           0 :         mmu_notifier_invalidate_range_start(&range);
    3102             : 
    3103             :         /*
    3104             :          * Re-check the pte - we dropped the lock
    3105             :          */
    3106           0 :         vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
    3107           0 :         if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
    3108           0 :                 if (old_folio) {
    3109           0 :                         if (!folio_test_anon(old_folio)) {
    3110           0 :                                 dec_mm_counter(mm, mm_counter_file(&old_folio->page));
    3111             :                                 inc_mm_counter(mm, MM_ANONPAGES);
    3112             :                         }
    3113             :                 } else {
    3114             :                         inc_mm_counter(mm, MM_ANONPAGES);
    3115             :                 }
    3116           0 :                 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
    3117           0 :                 entry = mk_pte(&new_folio->page, vma->vm_page_prot);
    3118             :                 entry = pte_sw_mkyoung(entry);
    3119           0 :                 if (unlikely(unshare)) {
    3120             :                         if (pte_soft_dirty(vmf->orig_pte))
    3121             :                                 entry = pte_mksoft_dirty(entry);
    3122             :                         if (pte_uffd_wp(vmf->orig_pte))
    3123             :                                 entry = pte_mkuffd_wp(entry);
    3124             :                 } else {
    3125           0 :                         entry = maybe_mkwrite(pte_mkdirty(entry), vma);
    3126             :                 }
    3127             : 
    3128             :                 /*
    3129             :                  * Clear the pte entry and flush it first, before updating the
    3130             :                  * pte with the new entry, to keep TLBs on different CPUs in
    3131             :                  * sync. This code used to set the new PTE then flush TLBs, but
    3132             :                  * that left a window where the new PTE could be loaded into
    3133             :                  * some TLBs while the old PTE remains in others.
    3134             :                  */
    3135           0 :                 ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
    3136           0 :                 folio_add_new_anon_rmap(new_folio, vma, vmf->address);
    3137           0 :                 folio_add_lru_vma(new_folio, vma);
    3138             :                 /*
    3139             :                  * We call the notify macro here because, when using secondary
    3140             :                  * mmu page tables (such as kvm shadow page tables), we want the
    3141             :                  * new page to be mapped directly into the secondary page table.
    3142             :                  */
    3143           0 :                 BUG_ON(unshare && pte_write(entry));
    3144           0 :                 set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
    3145             :                 update_mmu_cache(vma, vmf->address, vmf->pte);
    3146           0 :                 if (old_folio) {
    3147             :                         /*
    3148             :                          * Only after switching the pte to the new page may
    3149             :                          * we remove the mapcount here. Otherwise another
    3150             :                          * process may come and find the rmap count decremented
    3151             :                          * before the pte is switched to the new page, and
    3152             :                          * "reuse" the old page writing into it while our pte
    3153             :                          * here still points into it and can be read by other
    3154             :                          * threads.
    3155             :                          *
    3156             :                          * The critical issue is to order this
    3157             :                          * page_remove_rmap with the ptp_clear_flush above.
    3158             :                          * Those stores are ordered by (if nothing else,)
    3159             :                          * the barrier present in the atomic_add_negative
    3160             :                          * in page_remove_rmap.
    3161             :                          *
    3162             :                          * Then the TLB flush in ptep_clear_flush ensures that
    3163             :                          * no process can access the old page before the
    3164             :                          * decremented mapcount is visible. And the old page
    3165             :                          * cannot be reused until after the decremented
    3166             :                          * mapcount is visible. So transitively, TLBs to
    3167             :                          * old page will be flushed before it can be reused.
    3168             :                          */
    3169           0 :                         page_remove_rmap(vmf->page, vma, false);
    3170             :                 }
    3171             : 
    3172             :                 /* Free the old page.. */
    3173             :                 new_folio = old_folio;
    3174             :                 page_copied = 1;
    3175             :         } else {
    3176             :                 update_mmu_tlb(vma, vmf->address, vmf->pte);
    3177             :         }
    3178             : 
    3179           0 :         if (new_folio)
    3180             :                 folio_put(new_folio);
    3181             : 
    3182           0 :         pte_unmap_unlock(vmf->pte, vmf->ptl);
    3183             :         /*
    3184             :          * No need to double call mmu_notifier->invalidate_range() callback as
    3185             :          * the above ptep_clear_flush_notify() did already call it.
    3186             :          */
    3187           0 :         mmu_notifier_invalidate_range_only_end(&range);
    3188           0 :         if (old_folio) {
    3189           0 :                 if (page_copied)
    3190           0 :                         free_swap_cache(&old_folio->page);
    3191             :                 folio_put(old_folio);
    3192             :         }
    3193             : 
    3194             :         delayacct_wpcopy_end();
    3195             :         return 0;
    3196             : oom_free_new:
    3197             :         folio_put(new_folio);
    3198             : oom:
    3199           0 :         if (old_folio)
    3200             :                 folio_put(old_folio);
    3201             : 
    3202             :         delayacct_wpcopy_end();
    3203             :         return VM_FAULT_OOM;
    3204             : }
    3205             : 
    3206             : /**
    3207             :  * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
    3208             :  *                        writeable once the page is prepared
    3209             :  *
    3210             :  * @vmf: structure describing the fault
    3211             :  *
    3212             :  * This function handles all that is needed to finish a write page fault in a
    3213             :  * shared mapping due to PTE being read-only once the mapped page is prepared.
    3214             :  * It handles locking of PTE and modifying it.
    3215             :  *
    3216             :  * The function expects the page to be locked or other protection against
    3217             :  * concurrent faults / writeback (such as DAX radix tree locks).
    3218             :  *
    3219             :  * Return: %0 on success, %VM_FAULT_NOPAGE when PTE got changed before
    3220             :  * we acquired PTE lock.
    3221             :  */
    3222           0 : vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf)
    3223             : {
    3224           0 :         WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
    3225           0 :         vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
    3226             :                                        &vmf->ptl);
    3227             :         /*
    3228             :          * We might have raced with another page fault while we released the
    3229             :          * pte_offset_map_lock.
    3230             :          */
    3231           0 :         if (!pte_same(*vmf->pte, vmf->orig_pte)) {
    3232           0 :                 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
    3233           0 :                 pte_unmap_unlock(vmf->pte, vmf->ptl);
    3234           0 :                 return VM_FAULT_NOPAGE;
    3235             :         }
    3236           0 :         wp_page_reuse(vmf);
    3237           0 :         return 0;
    3238             : }
    3239             : 
    3240             : /*
    3241             :  * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
    3242             :  * mapping
    3243             :  */
    3244           0 : static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
    3245             : {
    3246           0 :         struct vm_area_struct *vma = vmf->vma;
    3247             : 
    3248           0 :         if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
    3249             :                 vm_fault_t ret;
    3250             : 
    3251           0 :                 pte_unmap_unlock(vmf->pte, vmf->ptl);
    3252           0 :                 vmf->flags |= FAULT_FLAG_MKWRITE;
    3253           0 :                 ret = vma->vm_ops->pfn_mkwrite(vmf);
    3254           0 :                 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
    3255             :                         return ret;
    3256           0 :                 return finish_mkwrite_fault(vmf);
    3257             :         }
    3258           0 :         wp_page_reuse(vmf);
    3259           0 :         return 0;
    3260             : }
    3261             : 
    3262           0 : static vm_fault_t wp_page_shared(struct vm_fault *vmf)
    3263             :         __releases(vmf->ptl)
    3264             : {
    3265           0 :         struct vm_area_struct *vma = vmf->vma;
    3266           0 :         vm_fault_t ret = 0;
    3267             : 
    3268           0 :         get_page(vmf->page);
    3269             : 
    3270           0 :         if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
    3271             :                 vm_fault_t tmp;
    3272             : 
    3273           0 :                 pte_unmap_unlock(vmf->pte, vmf->ptl);
    3274           0 :                 tmp = do_page_mkwrite(vmf);
    3275           0 :                 if (unlikely(!tmp || (tmp &
    3276             :                                       (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
    3277           0 :                         put_page(vmf->page);
    3278           0 :                         return tmp;
    3279             :                 }
    3280           0 :                 tmp = finish_mkwrite_fault(vmf);
    3281           0 :                 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
    3282           0 :                         unlock_page(vmf->page);
    3283           0 :                         put_page(vmf->page);
    3284           0 :                         return tmp;
    3285             :                 }
    3286             :         } else {
    3287           0 :                 wp_page_reuse(vmf);
    3288           0 :                 lock_page(vmf->page);
    3289             :         }
    3290           0 :         ret |= fault_dirty_shared_page(vmf);
    3291           0 :         put_page(vmf->page);
    3292             : 
    3293           0 :         return ret;
    3294             : }
    3295             : 
    3296             : /*
    3297             :  * This routine handles present pages, when
    3298             :  * * users try to write to a shared page (FAULT_FLAG_WRITE)
    3299             :  * * GUP wants to take a R/O pin on a possibly shared anonymous page
    3300             :  *   (FAULT_FLAG_UNSHARE)
    3301             :  *
    3302             :  * It is done by copying the page to a new address and decrementing the
    3303             :  * shared-page counter for the old page.
    3304             :  *
    3305             :  * Note that this routine assumes that the protection checks have been
    3306             :  * done by the caller (the low-level page fault routine in most cases).
    3307             :  * Thus, with FAULT_FLAG_WRITE, we can safely just mark it writable once we've
    3308             :  * done any necessary COW.
    3309             :  *
    3310             :  * In case of FAULT_FLAG_WRITE, we also mark the page dirty at this point even
    3311             :  * though the page will change only once the write actually happens. This
    3312             :  * avoids a few races, and potentially makes it more efficient.
    3313             :  *
    3314             :  * We enter with non-exclusive mmap_lock (to exclude vma changes,
    3315             :  * but allow concurrent faults), with pte both mapped and locked.
    3316             :  * We return with mmap_lock still held, but pte unmapped and unlocked.
    3317             :  */
    3318           0 : static vm_fault_t do_wp_page(struct vm_fault *vmf)
    3319             :         __releases(vmf->ptl)
    3320             : {
    3321           0 :         const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
    3322           0 :         struct vm_area_struct *vma = vmf->vma;
    3323           0 :         struct folio *folio = NULL;
    3324             : 
    3325             :         if (likely(!unshare)) {
    3326             :                 if (userfaultfd_pte_wp(vma, *vmf->pte)) {
    3327             :                         pte_unmap_unlock(vmf->pte, vmf->ptl);
    3328             :                         return handle_userfault(vmf, VM_UFFD_WP);
    3329             :                 }
    3330             : 
    3331             :                 /*
    3332             :                  * Userfaultfd write-protect can defer flushes. Ensure the TLB
    3333             :                  * is flushed in this case before copying.
    3334             :                  */
    3335             :                 if (unlikely(userfaultfd_wp(vmf->vma) &&
    3336             :                              mm_tlb_flush_pending(vmf->vma->vm_mm)))
    3337             :                         flush_tlb_page(vmf->vma, vmf->address);
    3338             :         }
    3339             : 
    3340           0 :         vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
    3341             : 
    3342             :         /*
    3343             :          * Shared mapping: we are guaranteed to have VM_WRITE and
    3344             :          * FAULT_FLAG_WRITE set at this point.
    3345             :          */
    3346           0 :         if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) {
    3347             :                 /*
    3348             :                  * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
    3349             :                  * VM_PFNMAP VMA.
    3350             :                  *
    3351             :                  * We should not cow pages in a shared writeable mapping.
    3352             :                  * Just mark the pages writable and/or call ops->pfn_mkwrite.
    3353             :                  */
    3354           0 :                 if (!vmf->page)
    3355           0 :                         return wp_pfn_shared(vmf);
    3356           0 :                 return wp_page_shared(vmf);
    3357             :         }
    3358             : 
    3359           0 :         if (vmf->page)
    3360           0 :                 folio = page_folio(vmf->page);
    3361             : 
    3362             :         /*
    3363             :          * Private mapping: create an exclusive anonymous page copy if reuse
    3364             :          * is impossible. We might miss VM_WRITE for FOLL_FORCE handling.
    3365             :          */
    3366           0 :         if (folio && folio_test_anon(folio)) {
    3367             :                 /*
    3368             :                  * If the page is exclusive to this process we must reuse the
    3369             :                  * page without further checks.
    3370             :                  */
    3371           0 :                 if (PageAnonExclusive(vmf->page))
    3372             :                         goto reuse;
    3373             : 
    3374             :                 /*
    3375             :                  * We have to verify under folio lock: these early checks are
    3376             :                  * just an optimization to avoid locking the folio and freeing
    3377             :                  * the swapcache if there is little hope that we can reuse.
    3378             :                  *
    3379             :                  * KSM doesn't necessarily raise the folio refcount.
    3380             :                  */
    3381           0 :                 if (folio_test_ksm(folio) || folio_ref_count(folio) > 3)
    3382             :                         goto copy;
    3383           0 :                 if (!folio_test_lru(folio))
    3384             :                         /*
    3385             :                          * Note: We cannot easily detect+handle references from
    3386             :                          * remote LRU pagevecs or references to LRU folios.
    3387             :                          */
    3388           0 :                         lru_add_drain();
    3389           0 :                 if (folio_ref_count(folio) > 1 + folio_test_swapcache(folio))
    3390             :                         goto copy;
    3391           0 :                 if (!folio_trylock(folio))
    3392             :                         goto copy;
    3393           0 :                 if (folio_test_swapcache(folio))
    3394           0 :                         folio_free_swap(folio);
    3395           0 :                 if (folio_test_ksm(folio) || folio_ref_count(folio) != 1) {
    3396           0 :                         folio_unlock(folio);
    3397           0 :                         goto copy;
    3398             :                 }
    3399             :                 /*
    3400             :                  * Ok, we've got the only folio reference from our mapping
    3401             :                  * and the folio is locked, it's dark out, and we're wearing
    3402             :                  * sunglasses. Hit it.
    3403             :                  */
    3404           0 :                 page_move_anon_rmap(vmf->page, vma);
    3405           0 :                 folio_unlock(folio);
    3406             : reuse:
    3407           0 :                 if (unlikely(unshare)) {
    3408           0 :                         pte_unmap_unlock(vmf->pte, vmf->ptl);
    3409           0 :                         return 0;
    3410             :                 }
    3411           0 :                 wp_page_reuse(vmf);
    3412           0 :                 return 0;
    3413             :         }
    3414             : copy:
    3415             :         /*
    3416             :          * Ok, we need to copy. Oh, well..
    3417             :          */
    3418           0 :         if (folio)
    3419             :                 folio_get(folio);
    3420             : 
    3421           0 :         pte_unmap_unlock(vmf->pte, vmf->ptl);
    3422             : #ifdef CONFIG_KSM
    3423             :         if (folio && folio_test_ksm(folio))
    3424             :                 count_vm_event(COW_KSM);
    3425             : #endif
    3426           0 :         return wp_page_copy(vmf);
    3427             : }
    3428             : 
    3429             : static void unmap_mapping_range_vma(struct vm_area_struct *vma,
    3430             :                 unsigned long start_addr, unsigned long end_addr,
    3431             :                 struct zap_details *details)
    3432             : {
    3433           0 :         zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
    3434             : }
    3435             : 
    3436           0 : static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
    3437             :                                             pgoff_t first_index,
    3438             :                                             pgoff_t last_index,
    3439             :                                             struct zap_details *details)
    3440             : {
    3441             :         struct vm_area_struct *vma;
    3442             :         pgoff_t vba, vea, zba, zea;
    3443             : 
    3444           0 :         vma_interval_tree_foreach(vma, root, first_index, last_index) {
    3445           0 :                 vba = vma->vm_pgoff;
    3446           0 :                 vea = vba + vma_pages(vma) - 1;
    3447           0 :                 zba = max(first_index, vba);
    3448           0 :                 zea = min(last_index, vea);
    3449             : 
    3450           0 :                 unmap_mapping_range_vma(vma,
    3451           0 :                         ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
    3452           0 :                         ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
    3453             :                                 details);
    3454             :         }
    3455           0 : }
    3456             : 
    3457             : /**
    3458             :  * unmap_mapping_folio() - Unmap single folio from processes.
    3459             :  * @folio: The locked folio to be unmapped.
    3460             :  *
    3461             :  * Unmap this folio from any userspace process which still has it mmaped.
    3462             :  * Typically, for efficiency, the range of nearby pages has already been
    3463             :  * unmapped by unmap_mapping_pages() or unmap_mapping_range().  But once
    3464             :  * truncation or invalidation holds the lock on a folio, it may find that
    3465             :  * the page has been remapped again: and then uses unmap_mapping_folio()
    3466             :  * to unmap it finally.
    3467             :  */
    3468           0 : void unmap_mapping_folio(struct folio *folio)
    3469             : {
    3470           0 :         struct address_space *mapping = folio->mapping;
    3471           0 :         struct zap_details details = { };
    3472             :         pgoff_t first_index;
    3473             :         pgoff_t last_index;
    3474             : 
    3475             :         VM_BUG_ON(!folio_test_locked(folio));
    3476             : 
    3477           0 :         first_index = folio->index;
    3478           0 :         last_index = folio->index + folio_nr_pages(folio) - 1;
    3479             : 
    3480             :         details.even_cows = false;
    3481           0 :         details.single_folio = folio;
    3482           0 :         details.zap_flags = ZAP_FLAG_DROP_MARKER;
    3483             : 
    3484           0 :         i_mmap_lock_read(mapping);
    3485           0 :         if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
    3486           0 :                 unmap_mapping_range_tree(&mapping->i_mmap, first_index,
    3487             :                                          last_index, &details);
    3488           0 :         i_mmap_unlock_read(mapping);
    3489           0 : }
    3490             : 
    3491             : /**
    3492             :  * unmap_mapping_pages() - Unmap pages from processes.
    3493             :  * @mapping: The address space containing pages to be unmapped.
    3494             :  * @start: Index of first page to be unmapped.
    3495             :  * @nr: Number of pages to be unmapped.  0 to unmap to end of file.
    3496             :  * @even_cows: Whether to unmap even private COWed pages.
    3497             :  *
    3498             :  * Unmap the pages in this address space from any userspace process which
    3499             :  * has them mmaped.  Generally, you want to remove COWed pages as well when
    3500             :  * a file is being truncated, but not when invalidating pages from the page
    3501             :  * cache.
    3502             :  */
    3503           0 : void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
    3504             :                 pgoff_t nr, bool even_cows)
    3505             : {
    3506           0 :         struct zap_details details = { };
    3507           0 :         pgoff_t first_index = start;
    3508           0 :         pgoff_t last_index = start + nr - 1;
    3509             : 
    3510           0 :         details.even_cows = even_cows;
    3511           0 :         if (last_index < first_index)
    3512           0 :                 last_index = ULONG_MAX;
    3513             : 
    3514           0 :         i_mmap_lock_read(mapping);
    3515           0 :         if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
    3516           0 :                 unmap_mapping_range_tree(&mapping->i_mmap, first_index,
    3517             :                                          last_index, &details);
    3518           0 :         i_mmap_unlock_read(mapping);
    3519           0 : }
    3520             : EXPORT_SYMBOL_GPL(unmap_mapping_pages);
    3521             : 
    3522             : /**
    3523             :  * unmap_mapping_range - unmap the portion of all mmaps in the specified
    3524             :  * address_space corresponding to the specified byte range in the underlying
    3525             :  * file.
    3526             :  *
    3527             :  * @mapping: the address space containing mmaps to be unmapped.
    3528             :  * @holebegin: byte in first page to unmap, relative to the start of
    3529             :  * the underlying file.  This will be rounded down to a PAGE_SIZE
    3530             :  * boundary.  Note that this is different from truncate_pagecache(), which
    3531             :  * must keep the partial page.  In contrast, we must get rid of
    3532             :  * partial pages.
    3533             :  * @holelen: size of prospective hole in bytes.  This will be rounded
    3534             :  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
    3535             :  * end of the file.
    3536             :  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
    3537             :  * but 0 when invalidating pagecache, don't throw away private data.
    3538             :  */
    3539           0 : void unmap_mapping_range(struct address_space *mapping,
    3540             :                 loff_t const holebegin, loff_t const holelen, int even_cows)
    3541             : {
    3542           0 :         pgoff_t hba = holebegin >> PAGE_SHIFT;
    3543           0 :         pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
    3544             : 
    3545             :         /* Check for overflow. */
    3546             :         if (sizeof(holelen) > sizeof(hlen)) {
    3547             :                 long long holeend =
    3548             :                         (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
    3549             :                 if (holeend & ~(long long)ULONG_MAX)
    3550             :                         hlen = ULONG_MAX - hba + 1;
    3551             :         }
    3552             : 
    3553           0 :         unmap_mapping_pages(mapping, hba, hlen, even_cows);
    3554           0 : }
    3555             : EXPORT_SYMBOL(unmap_mapping_range);
    3556             : 
    3557             : /*
    3558             :  * Restore a potential device exclusive pte to a working pte entry
    3559             :  */
    3560             : static vm_fault_t remove_device_exclusive_entry(struct vm_fault *vmf)
    3561             : {
    3562             :         struct folio *folio = page_folio(vmf->page);
    3563             :         struct vm_area_struct *vma = vmf->vma;
    3564             :         struct mmu_notifier_range range;
    3565             : 
    3566             :         if (!folio_lock_or_retry(folio, vma->vm_mm, vmf->flags))
    3567             :                 return VM_FAULT_RETRY;
    3568             :         mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0,
    3569             :                                 vma->vm_mm, vmf->address & PAGE_MASK,
    3570             :                                 (vmf->address & PAGE_MASK) + PAGE_SIZE, NULL);
    3571             :         mmu_notifier_invalidate_range_start(&range);
    3572             : 
    3573             :         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
    3574             :                                 &vmf->ptl);
    3575             :         if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
    3576             :                 restore_exclusive_pte(vma, vmf->page, vmf->address, vmf->pte);
    3577             : 
    3578             :         pte_unmap_unlock(vmf->pte, vmf->ptl);
    3579             :         folio_unlock(folio);
    3580             : 
    3581             :         mmu_notifier_invalidate_range_end(&range);
    3582             :         return 0;
    3583             : }
    3584             : 
    3585           0 : static inline bool should_try_to_free_swap(struct folio *folio,
    3586             :                                            struct vm_area_struct *vma,
    3587             :                                            unsigned int fault_flags)
    3588             : {
    3589           0 :         if (!folio_test_swapcache(folio))
    3590             :                 return false;
    3591           0 :         if (mem_cgroup_swap_full(folio) || (vma->vm_flags & VM_LOCKED) ||
    3592           0 :             folio_test_mlocked(folio))
    3593             :                 return true;
    3594             :         /*
    3595             :          * If we want to map a page that's in the swapcache writable, we
    3596             :          * have to detect via the refcount if we're really the exclusive
    3597             :          * user. Try freeing the swapcache to get rid of the swapcache
    3598             :          * reference only in case it's likely that we'll be the exlusive user.
    3599             :          */
    3600           0 :         return (fault_flags & FAULT_FLAG_WRITE) && !folio_test_ksm(folio) &&
    3601           0 :                 folio_ref_count(folio) == 2;
    3602             : }
    3603             : 
    3604             : static vm_fault_t pte_marker_clear(struct vm_fault *vmf)
    3605             : {
    3606             :         vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd,
    3607             :                                        vmf->address, &vmf->ptl);
    3608             :         /*
    3609             :          * Be careful so that we will only recover a special uffd-wp pte into a
    3610             :          * none pte.  Otherwise it means the pte could have changed, so retry.
    3611             :          *
    3612             :          * This should also cover the case where e.g. the pte changed
    3613             :          * quickly from a PTE_MARKER_UFFD_WP into PTE_MARKER_SWAPIN_ERROR.
    3614             :          * So is_pte_marker() check is not enough to safely drop the pte.
    3615             :          */
    3616             :         if (pte_same(vmf->orig_pte, *vmf->pte))
    3617             :                 pte_clear(vmf->vma->vm_mm, vmf->address, vmf->pte);
    3618             :         pte_unmap_unlock(vmf->pte, vmf->ptl);
    3619             :         return 0;
    3620             : }
    3621             : 
    3622             : /*
    3623             :  * This is actually a page-missing access, but with uffd-wp special pte
    3624             :  * installed.  It means this pte was wr-protected before being unmapped.
    3625             :  */
    3626             : static vm_fault_t pte_marker_handle_uffd_wp(struct vm_fault *vmf)
    3627             : {
    3628             :         /*
    3629             :          * Just in case there're leftover special ptes even after the region
    3630             :          * got unregistered - we can simply clear them.
    3631             :          */
    3632             :         if (unlikely(!userfaultfd_wp(vmf->vma) || vma_is_anonymous(vmf->vma)))
    3633             :                 return pte_marker_clear(vmf);
    3634             : 
    3635             :         /* do_fault() can handle pte markers too like none pte */
    3636             :         return do_fault(vmf);
    3637             : }
    3638             : 
    3639           0 : static vm_fault_t handle_pte_marker(struct vm_fault *vmf)
    3640             : {
    3641           0 :         swp_entry_t entry = pte_to_swp_entry(vmf->orig_pte);
    3642           0 :         unsigned long marker = pte_marker_get(entry);
    3643             : 
    3644             :         /*
    3645             :          * PTE markers should never be empty.  If anything weird happened,
    3646             :          * the best thing to do is to kill the process along with its mm.
    3647             :          */
    3648           0 :         if (WARN_ON_ONCE(!marker))
    3649             :                 return VM_FAULT_SIGBUS;
    3650             : 
    3651             :         /* Higher priority than uffd-wp when data corrupted */
    3652             :         if (marker & PTE_MARKER_SWAPIN_ERROR)
    3653             :                 return VM_FAULT_SIGBUS;
    3654             : 
    3655             :         if (pte_marker_entry_uffd_wp(entry))
    3656             :                 return pte_marker_handle_uffd_wp(vmf);
    3657             : 
    3658             :         /* This is an unknown pte marker */
    3659             :         return VM_FAULT_SIGBUS;
    3660             : }
    3661             : 
    3662             : /*
    3663             :  * We enter with non-exclusive mmap_lock (to exclude vma changes,
    3664             :  * but allow concurrent faults), and pte mapped but not yet locked.
    3665             :  * We return with pte unmapped and unlocked.
    3666             :  *
    3667             :  * We return with the mmap_lock locked or unlocked in the same cases
    3668             :  * as does filemap_fault().
    3669             :  */
    3670           0 : vm_fault_t do_swap_page(struct vm_fault *vmf)
    3671             : {
    3672           0 :         struct vm_area_struct *vma = vmf->vma;
    3673           0 :         struct folio *swapcache, *folio = NULL;
    3674             :         struct page *page;
    3675           0 :         struct swap_info_struct *si = NULL;
    3676           0 :         rmap_t rmap_flags = RMAP_NONE;
    3677           0 :         bool exclusive = false;
    3678             :         swp_entry_t entry;
    3679             :         pte_t pte;
    3680             :         int locked;
    3681           0 :         vm_fault_t ret = 0;
    3682           0 :         void *shadow = NULL;
    3683             : 
    3684           0 :         if (!pte_unmap_same(vmf))
    3685             :                 goto out;
    3686             : 
    3687           0 :         entry = pte_to_swp_entry(vmf->orig_pte);
    3688           0 :         if (unlikely(non_swap_entry(entry))) {
    3689           0 :                 if (is_migration_entry(entry)) {
    3690           0 :                         migration_entry_wait(vma->vm_mm, vmf->pmd,
    3691             :                                              vmf->address);
    3692           0 :                 } else if (is_device_exclusive_entry(entry)) {
    3693             :                         vmf->page = pfn_swap_entry_to_page(entry);
    3694             :                         ret = remove_device_exclusive_entry(vmf);
    3695           0 :                 } else if (is_device_private_entry(entry)) {
    3696             :                         vmf->page = pfn_swap_entry_to_page(entry);
    3697             :                         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
    3698             :                                         vmf->address, &vmf->ptl);
    3699             :                         if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
    3700             :                                 spin_unlock(vmf->ptl);
    3701             :                                 goto out;
    3702             :                         }
    3703             : 
    3704             :                         /*
    3705             :                          * Get a page reference while we know the page can't be
    3706             :                          * freed.
    3707             :                          */
    3708             :                         get_page(vmf->page);
    3709             :                         pte_unmap_unlock(vmf->pte, vmf->ptl);
    3710             :                         ret = vmf->page->pgmap->ops->migrate_to_ram(vmf);
    3711             :                         put_page(vmf->page);
    3712           0 :                 } else if (is_hwpoison_entry(entry)) {
    3713             :                         ret = VM_FAULT_HWPOISON;
    3714           0 :                 } else if (is_pte_marker_entry(entry)) {
    3715           0 :                         ret = handle_pte_marker(vmf);
    3716             :                 } else {
    3717           0 :                         print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
    3718           0 :                         ret = VM_FAULT_SIGBUS;
    3719             :                 }
    3720             :                 goto out;
    3721             :         }
    3722             : 
    3723             :         /* Prevent swapoff from happening to us. */
    3724           0 :         si = get_swap_device(entry);
    3725           0 :         if (unlikely(!si))
    3726             :                 goto out;
    3727             : 
    3728           0 :         folio = swap_cache_get_folio(entry, vma, vmf->address);
    3729           0 :         if (folio)
    3730           0 :                 page = folio_file_page(folio, swp_offset(entry));
    3731           0 :         swapcache = folio;
    3732             : 
    3733           0 :         if (!folio) {
    3734           0 :                 if (data_race(si->flags & SWP_SYNCHRONOUS_IO) &&
    3735           0 :                     __swap_count(entry) == 1) {
    3736             :                         /* skip swapcache */
    3737           0 :                         folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0,
    3738             :                                                 vma, vmf->address, false);
    3739           0 :                         page = &folio->page;
    3740           0 :                         if (folio) {
    3741           0 :                                 __folio_set_locked(folio);
    3742           0 :                                 __folio_set_swapbacked(folio);
    3743             : 
    3744           0 :                                 if (mem_cgroup_swapin_charge_folio(folio,
    3745             :                                                         vma->vm_mm, GFP_KERNEL,
    3746             :                                                         entry)) {
    3747             :                                         ret = VM_FAULT_OOM;
    3748             :                                         goto out_page;
    3749             :                                 }
    3750           0 :                                 mem_cgroup_swapin_uncharge_swap(entry);
    3751             : 
    3752           0 :                                 shadow = get_shadow_from_swap_cache(entry);
    3753           0 :                                 if (shadow)
    3754           0 :                                         workingset_refault(folio, shadow);
    3755             : 
    3756           0 :                                 folio_add_lru(folio);
    3757             : 
    3758             :                                 /* To provide entry to swap_readpage() */
    3759           0 :                                 folio_set_swap_entry(folio, entry);
    3760           0 :                                 swap_readpage(page, true, NULL);
    3761           0 :                                 folio->private = NULL;
    3762             :                         }
    3763             :                 } else {
    3764           0 :                         page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
    3765             :                                                 vmf);
    3766           0 :                         if (page)
    3767           0 :                                 folio = page_folio(page);
    3768             :                         swapcache = folio;
    3769             :                 }
    3770             : 
    3771           0 :                 if (!folio) {
    3772             :                         /*
    3773             :                          * Back out if somebody else faulted in this pte
    3774             :                          * while we released the pte lock.
    3775             :                          */
    3776           0 :                         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
    3777             :                                         vmf->address, &vmf->ptl);
    3778           0 :                         if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
    3779           0 :                                 ret = VM_FAULT_OOM;
    3780             :                         goto unlock;
    3781             :                 }
    3782             : 
    3783             :                 /* Had to read the page from swap area: Major fault */
    3784           0 :                 ret = VM_FAULT_MAJOR;
    3785           0 :                 count_vm_event(PGMAJFAULT);
    3786           0 :                 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
    3787             :         } else if (PageHWPoison(page)) {
    3788             :                 /*
    3789             :                  * hwpoisoned dirty swapcache pages are kept for killing
    3790             :                  * owner processes (which may be unknown at hwpoison time)
    3791             :                  */
    3792             :                 ret = VM_FAULT_HWPOISON;
    3793             :                 goto out_release;
    3794             :         }
    3795             : 
    3796           0 :         locked = folio_lock_or_retry(folio, vma->vm_mm, vmf->flags);
    3797             : 
    3798           0 :         if (!locked) {
    3799           0 :                 ret |= VM_FAULT_RETRY;
    3800           0 :                 goto out_release;
    3801             :         }
    3802             : 
    3803           0 :         if (swapcache) {
    3804             :                 /*
    3805             :                  * Make sure folio_free_swap() or swapoff did not release the
    3806             :                  * swapcache from under us.  The page pin, and pte_same test
    3807             :                  * below, are not enough to exclude that.  Even if it is still
    3808             :                  * swapcache, we need to check that the page's swap has not
    3809             :                  * changed.
    3810             :                  */
    3811           0 :                 if (unlikely(!folio_test_swapcache(folio) ||
    3812             :                              page_private(page) != entry.val))
    3813             :                         goto out_page;
    3814             : 
    3815             :                 /*
    3816             :                  * KSM sometimes has to copy on read faults, for example, if
    3817             :                  * page->index of !PageKSM() pages would be nonlinear inside the
    3818             :                  * anon VMA -- PageKSM() is lost on actual swapout.
    3819             :                  */
    3820           0 :                 page = ksm_might_need_to_copy(page, vma, vmf->address);
    3821           0 :                 if (unlikely(!page)) {
    3822             :                         ret = VM_FAULT_OOM;
    3823             :                         goto out_page;
    3824           0 :                 } else if (unlikely(PTR_ERR(page) == -EHWPOISON)) {
    3825             :                         ret = VM_FAULT_HWPOISON;
    3826             :                         goto out_page;
    3827             :                 }
    3828           0 :                 folio = page_folio(page);
    3829             : 
    3830             :                 /*
    3831             :                  * If we want to map a page that's in the swapcache writable, we
    3832             :                  * have to detect via the refcount if we're really the exclusive
    3833             :                  * owner. Try removing the extra reference from the local LRU
    3834             :                  * pagevecs if required.
    3835             :                  */
    3836           0 :                 if ((vmf->flags & FAULT_FLAG_WRITE) && folio == swapcache &&
    3837           0 :                     !folio_test_ksm(folio) && !folio_test_lru(folio))
    3838           0 :                         lru_add_drain();
    3839             :         }
    3840             : 
    3841           0 :         cgroup_throttle_swaprate(page, GFP_KERNEL);
    3842             : 
    3843             :         /*
    3844             :          * Back out if somebody else already faulted in this pte.
    3845             :          */
    3846           0 :         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
    3847             :                         &vmf->ptl);
    3848           0 :         if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
    3849             :                 goto out_nomap;
    3850             : 
    3851           0 :         if (unlikely(!folio_test_uptodate(folio))) {
    3852             :                 ret = VM_FAULT_SIGBUS;
    3853             :                 goto out_nomap;
    3854             :         }
    3855             : 
    3856             :         /*
    3857             :          * PG_anon_exclusive reuses PG_mappedtodisk for anon pages. A swap pte
    3858             :          * must never point at an anonymous page in the swapcache that is
    3859             :          * PG_anon_exclusive. Sanity check that this holds and especially, that
    3860             :          * no filesystem set PG_mappedtodisk on a page in the swapcache. Sanity
    3861             :          * check after taking the PT lock and making sure that nobody
    3862             :          * concurrently faulted in this page and set PG_anon_exclusive.
    3863             :          */
    3864           0 :         BUG_ON(!folio_test_anon(folio) && folio_test_mappedtodisk(folio));
    3865           0 :         BUG_ON(folio_test_anon(folio) && PageAnonExclusive(page));
    3866             : 
    3867             :         /*
    3868             :          * Check under PT lock (to protect against concurrent fork() sharing
    3869             :          * the swap entry concurrently) for certainly exclusive pages.
    3870             :          */
    3871           0 :         if (!folio_test_ksm(folio)) {
    3872           0 :                 exclusive = pte_swp_exclusive(vmf->orig_pte);
    3873           0 :                 if (folio != swapcache) {
    3874             :                         /*
    3875             :                          * We have a fresh page that is not exposed to the
    3876             :                          * swapcache -> certainly exclusive.
    3877             :                          */
    3878             :                         exclusive = true;
    3879           0 :                 } else if (exclusive && folio_test_writeback(folio) &&
    3880           0 :                           data_race(si->flags & SWP_STABLE_WRITES)) {
    3881             :                         /*
    3882             :                          * This is tricky: not all swap backends support
    3883             :                          * concurrent page modifications while under writeback.
    3884             :                          *
    3885             :                          * So if we stumble over such a page in the swapcache
    3886             :                          * we must not set the page exclusive, otherwise we can
    3887             :                          * map it writable without further checks and modify it
    3888             :                          * while still under writeback.
    3889             :                          *
    3890             :                          * For these problematic swap backends, simply drop the
    3891             :                          * exclusive marker: this is perfectly fine as we start
    3892             :                          * writeback only if we fully unmapped the page and
    3893             :                          * there are no unexpected references on the page after
    3894             :                          * unmapping succeeded. After fully unmapped, no
    3895             :                          * further GUP references (FOLL_GET and FOLL_PIN) can
    3896             :                          * appear, so dropping the exclusive marker and mapping
    3897             :                          * it only R/O is fine.
    3898             :                          */
    3899           0 :                         exclusive = false;
    3900             :                 }
    3901             :         }
    3902             : 
    3903             :         /*
    3904             :          * Remove the swap entry and conditionally try to free up the swapcache.
    3905             :          * We're already holding a reference on the page but haven't mapped it
    3906             :          * yet.
    3907             :          */
    3908           0 :         swap_free(entry);
    3909           0 :         if (should_try_to_free_swap(folio, vma, vmf->flags))
    3910           0 :                 folio_free_swap(folio);
    3911             : 
    3912           0 :         inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
    3913           0 :         dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
    3914           0 :         pte = mk_pte(page, vma->vm_page_prot);
    3915             : 
    3916             :         /*
    3917             :          * Same logic as in do_wp_page(); however, optimize for pages that are
    3918             :          * certainly not shared either because we just allocated them without
    3919             :          * exposing them to the swapcache or because the swap entry indicates
    3920             :          * exclusivity.
    3921             :          */
    3922           0 :         if (!folio_test_ksm(folio) &&
    3923           0 :             (exclusive || folio_ref_count(folio) == 1)) {
    3924           0 :                 if (vmf->flags & FAULT_FLAG_WRITE) {
    3925           0 :                         pte = maybe_mkwrite(pte_mkdirty(pte), vma);
    3926           0 :                         vmf->flags &= ~FAULT_FLAG_WRITE;
    3927             :                 }
    3928             :                 rmap_flags |= RMAP_EXCLUSIVE;
    3929             :         }
    3930           0 :         flush_icache_page(vma, page);
    3931           0 :         if (pte_swp_soft_dirty(vmf->orig_pte))
    3932             :                 pte = pte_mksoft_dirty(pte);
    3933             :         if (pte_swp_uffd_wp(vmf->orig_pte))
    3934             :                 pte = pte_mkuffd_wp(pte);
    3935           0 :         vmf->orig_pte = pte;
    3936             : 
    3937             :         /* ksm created a completely new copy */
    3938           0 :         if (unlikely(folio != swapcache && swapcache)) {
    3939           0 :                 page_add_new_anon_rmap(page, vma, vmf->address);
    3940           0 :                 folio_add_lru_vma(folio, vma);
    3941             :         } else {
    3942           0 :                 page_add_anon_rmap(page, vma, vmf->address, rmap_flags);
    3943             :         }
    3944             : 
    3945             :         VM_BUG_ON(!folio_test_anon(folio) ||
    3946             :                         (pte_write(pte) && !PageAnonExclusive(page)));
    3947           0 :         set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
    3948           0 :         arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
    3949             : 
    3950           0 :         folio_unlock(folio);
    3951           0 :         if (folio != swapcache && swapcache) {
    3952             :                 /*
    3953             :                  * Hold the lock to avoid the swap entry to be reused
    3954             :                  * until we take the PT lock for the pte_same() check
    3955             :                  * (to avoid false positives from pte_same). For
    3956             :                  * further safety release the lock after the swap_free
    3957             :                  * so that the swap count won't change under a
    3958             :                  * parallel locked swapcache.
    3959             :                  */
    3960           0 :                 folio_unlock(swapcache);
    3961             :                 folio_put(swapcache);
    3962             :         }
    3963             : 
    3964           0 :         if (vmf->flags & FAULT_FLAG_WRITE) {
    3965           0 :                 ret |= do_wp_page(vmf);
    3966           0 :                 if (ret & VM_FAULT_ERROR)
    3967           0 :                         ret &= VM_FAULT_ERROR;
    3968             :                 goto out;
    3969             :         }
    3970             : 
    3971             :         /* No need to invalidate - it was non-present before */
    3972             :         update_mmu_cache(vma, vmf->address, vmf->pte);
    3973             : unlock:
    3974           0 :         pte_unmap_unlock(vmf->pte, vmf->ptl);
    3975             : out:
    3976           0 :         if (si)
    3977             :                 put_swap_device(si);
    3978             :         return ret;
    3979             : out_nomap:
    3980           0 :         pte_unmap_unlock(vmf->pte, vmf->ptl);
    3981             : out_page:
    3982           0 :         folio_unlock(folio);
    3983             : out_release:
    3984           0 :         folio_put(folio);
    3985           0 :         if (folio != swapcache && swapcache) {
    3986           0 :                 folio_unlock(swapcache);
    3987             :                 folio_put(swapcache);
    3988             :         }
    3989           0 :         if (si)
    3990             :                 put_swap_device(si);
    3991             :         return ret;
    3992             : }
    3993             : 
    3994             : /*
    3995             :  * We enter with non-exclusive mmap_lock (to exclude vma changes,
    3996             :  * but allow concurrent faults), and pte mapped but not yet locked.
    3997             :  * We return with mmap_lock still held, but pte unmapped and unlocked.
    3998             :  */
    3999           0 : static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
    4000             : {
    4001           0 :         struct vm_area_struct *vma = vmf->vma;
    4002             :         struct folio *folio;
    4003           0 :         vm_fault_t ret = 0;
    4004             :         pte_t entry;
    4005             : 
    4006             :         /* File mapping without ->vm_ops ? */
    4007           0 :         if (vma->vm_flags & VM_SHARED)
    4008             :                 return VM_FAULT_SIGBUS;
    4009             : 
    4010             :         /*
    4011             :          * Use pte_alloc() instead of pte_alloc_map().  We can't run
    4012             :          * pte_offset_map() on pmds where a huge pmd might be created
    4013             :          * from a different thread.
    4014             :          *
    4015             :          * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when
    4016             :          * parallel threads are excluded by other means.
    4017             :          *
    4018             :          * Here we only have mmap_read_lock(mm).
    4019             :          */
    4020           0 :         if (pte_alloc(vma->vm_mm, vmf->pmd))
    4021             :                 return VM_FAULT_OOM;
    4022             : 
    4023             :         /* See comment in handle_pte_fault() */
    4024           0 :         if (unlikely(pmd_trans_unstable(vmf->pmd)))
    4025             :                 return 0;
    4026             : 
    4027             :         /* Use the zero-page for reads */
    4028           0 :         if (!(vmf->flags & FAULT_FLAG_WRITE) &&
    4029             :                         !mm_forbids_zeropage(vma->vm_mm)) {
    4030           0 :                 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
    4031             :                                                 vma->vm_page_prot));
    4032           0 :                 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
    4033             :                                 vmf->address, &vmf->ptl);
    4034           0 :                 if (!pte_none(*vmf->pte)) {
    4035             :                         update_mmu_tlb(vma, vmf->address, vmf->pte);
    4036             :                         goto unlock;
    4037             :                 }
    4038           0 :                 ret = check_stable_address_space(vma->vm_mm);
    4039           0 :                 if (ret)
    4040             :                         goto unlock;
    4041             :                 /* Deliver the page fault to userland, check inside PT lock */
    4042             :                 if (userfaultfd_missing(vma)) {
    4043             :                         pte_unmap_unlock(vmf->pte, vmf->ptl);
    4044             :                         return handle_userfault(vmf, VM_UFFD_MISSING);
    4045             :                 }
    4046             :                 goto setpte;
    4047             :         }
    4048             : 
    4049             :         /* Allocate our own private page. */
    4050           0 :         if (unlikely(anon_vma_prepare(vma)))
    4051             :                 goto oom;
    4052           0 :         folio = vma_alloc_zeroed_movable_folio(vma, vmf->address);
    4053           0 :         if (!folio)
    4054             :                 goto oom;
    4055             : 
    4056           0 :         if (mem_cgroup_charge(folio, vma->vm_mm, GFP_KERNEL))
    4057             :                 goto oom_free_page;
    4058           0 :         cgroup_throttle_swaprate(&folio->page, GFP_KERNEL);
    4059             : 
    4060             :         /*
    4061             :          * The memory barrier inside __folio_mark_uptodate makes sure that
    4062             :          * preceding stores to the page contents become visible before
    4063             :          * the set_pte_at() write.
    4064             :          */
    4065           0 :         __folio_mark_uptodate(folio);
    4066             : 
    4067           0 :         entry = mk_pte(&folio->page, vma->vm_page_prot);
    4068             :         entry = pte_sw_mkyoung(entry);
    4069           0 :         if (vma->vm_flags & VM_WRITE)
    4070           0 :                 entry = pte_mkwrite(pte_mkdirty(entry));
    4071             : 
    4072           0 :         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
    4073             :                         &vmf->ptl);
    4074           0 :         if (!pte_none(*vmf->pte)) {
    4075             :                 update_mmu_tlb(vma, vmf->address, vmf->pte);
    4076             :                 goto release;
    4077             :         }
    4078             : 
    4079           0 :         ret = check_stable_address_space(vma->vm_mm);
    4080           0 :         if (ret)
    4081             :                 goto release;
    4082             : 
    4083             :         /* Deliver the page fault to userland, check inside PT lock */
    4084           0 :         if (userfaultfd_missing(vma)) {
    4085             :                 pte_unmap_unlock(vmf->pte, vmf->ptl);
    4086             :                 folio_put(folio);
    4087             :                 return handle_userfault(vmf, VM_UFFD_MISSING);
    4088             :         }
    4089             : 
    4090           0 :         inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
    4091           0 :         folio_add_new_anon_rmap(folio, vma, vmf->address);
    4092           0 :         folio_add_lru_vma(folio, vma);
    4093             : setpte:
    4094           0 :         set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
    4095             : 
    4096             :         /* No need to invalidate - it was non-present before */
    4097             :         update_mmu_cache(vma, vmf->address, vmf->pte);
    4098             : unlock:
    4099           0 :         pte_unmap_unlock(vmf->pte, vmf->ptl);
    4100           0 :         return ret;
    4101             : release:
    4102             :         folio_put(folio);
    4103             :         goto unlock;
    4104             : oom_free_page:
    4105             :         folio_put(folio);
    4106             : oom:
    4107             :         return VM_FAULT_OOM;
    4108             : }
    4109             : 
    4110             : /*
    4111             :  * The mmap_lock must have been held on entry, and may have been
    4112             :  * released depending on flags and vma->vm_ops->fault() return value.
    4113             :  * See filemap_fault() and __lock_page_retry().
    4114             :  */
    4115           0 : static vm_fault_t __do_fault(struct vm_fault *vmf)
    4116             : {
    4117           0 :         struct vm_area_struct *vma = vmf->vma;
    4118             :         vm_fault_t ret;
    4119             : 
    4120             :         /*
    4121             :          * Preallocate pte before we take page_lock because this might lead to
    4122             :          * deadlocks for memcg reclaim which waits for pages under writeback:
    4123             :          *                              lock_page(A)
    4124             :          *                              SetPageWriteback(A)
    4125             :          *                              unlock_page(A)
    4126             :          * lock_page(B)
    4127             :          *                              lock_page(B)
    4128             :          * pte_alloc_one
    4129             :          *   shrink_page_list
    4130             :          *     wait_on_page_writeback(A)
    4131             :          *                              SetPageWriteback(B)
    4132             :          *                              unlock_page(B)
    4133             :          *                              # flush A, B to clear the writeback
    4134             :          */
    4135           0 :         if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
    4136           0 :                 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
    4137           0 :                 if (!vmf->prealloc_pte)
    4138             :                         return VM_FAULT_OOM;
    4139             :         }
    4140             : 
    4141           0 :         ret = vma->vm_ops->fault(vmf);
    4142           0 :         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
    4143             :                             VM_FAULT_DONE_COW)))
    4144             :                 return ret;
    4145             : 
    4146           0 :         if (unlikely(PageHWPoison(vmf->page))) {
    4147             :                 struct page *page = vmf->page;
    4148             :                 vm_fault_t poisonret = VM_FAULT_HWPOISON;
    4149             :                 if (ret & VM_FAULT_LOCKED) {
    4150             :                         if (page_mapped(page))
    4151             :                                 unmap_mapping_pages(page_mapping(page),
    4152             :                                                     page->index, 1, false);
    4153             :                         /* Retry if a clean page was removed from the cache. */
    4154             :                         if (invalidate_inode_page(page))
    4155             :                                 poisonret = VM_FAULT_NOPAGE;
    4156             :                         unlock_page(page);
    4157             :                 }
    4158             :                 put_page(page);
    4159             :                 vmf->page = NULL;
    4160             :                 return poisonret;
    4161             :         }
    4162             : 
    4163           0 :         if (unlikely(!(ret & VM_FAULT_LOCKED)))
    4164           0 :                 lock_page(vmf->page);
    4165             :         else
    4166             :                 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
    4167             : 
    4168             :         return ret;
    4169             : }
    4170             : 
    4171             : #ifdef CONFIG_TRANSPARENT_HUGEPAGE
    4172             : static void deposit_prealloc_pte(struct vm_fault *vmf)
    4173             : {
    4174             :         struct vm_area_struct *vma = vmf->vma;
    4175             : 
    4176             :         pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
    4177             :         /*
    4178             :          * We are going to consume the prealloc table,
    4179             :          * count that as nr_ptes.
    4180             :          */
    4181             :         mm_inc_nr_ptes(vma->vm_mm);
    4182             :         vmf->prealloc_pte = NULL;
    4183             : }
    4184             : 
    4185             : vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
    4186             : {
    4187             :         struct vm_area_struct *vma = vmf->vma;
    4188             :         bool write = vmf->flags & FAULT_FLAG_WRITE;
    4189             :         unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
    4190             :         pmd_t entry;
    4191             :         int i;
    4192             :         vm_fault_t ret = VM_FAULT_FALLBACK;
    4193             : 
    4194             :         if (!transhuge_vma_suitable(vma, haddr))
    4195             :                 return ret;
    4196             : 
    4197             :         page = compound_head(page);
    4198             :         if (compound_order(page) != HPAGE_PMD_ORDER)
    4199             :                 return ret;
    4200             : 
    4201             :         /*
    4202             :          * Just backoff if any subpage of a THP is corrupted otherwise
    4203             :          * the corrupted page may mapped by PMD silently to escape the
    4204             :          * check.  This kind of THP just can be PTE mapped.  Access to
    4205             :          * the corrupted subpage should trigger SIGBUS as expected.
    4206             :          */
    4207             :         if (unlikely(PageHasHWPoisoned(page)))
    4208             :                 return ret;
    4209             : 
    4210             :         /*
    4211             :          * Archs like ppc64 need additional space to store information
    4212             :          * related to pte entry. Use the preallocated table for that.
    4213             :          */
    4214             :         if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
    4215             :                 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
    4216             :                 if (!vmf->prealloc_pte)
    4217             :                         return VM_FAULT_OOM;
    4218             :         }
    4219             : 
    4220             :         vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
    4221             :         if (unlikely(!pmd_none(*vmf->pmd)))
    4222             :                 goto out;
    4223             : 
    4224             :         for (i = 0; i < HPAGE_PMD_NR; i++)
    4225             :                 flush_icache_page(vma, page + i);
    4226             : 
    4227             :         entry = mk_huge_pmd(page, vma->vm_page_prot);
    4228             :         if (write)
    4229             :                 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
    4230             : 
    4231             :         add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR);
    4232             :         page_add_file_rmap(page, vma, true);
    4233             : 
    4234             :         /*
    4235             :          * deposit and withdraw with pmd lock held
    4236             :          */
    4237             :         if (arch_needs_pgtable_deposit())
    4238             :                 deposit_prealloc_pte(vmf);
    4239             : 
    4240             :         set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
    4241             : 
    4242             :         update_mmu_cache_pmd(vma, haddr, vmf->pmd);
    4243             : 
    4244             :         /* fault is handled */
    4245             :         ret = 0;
    4246             :         count_vm_event(THP_FILE_MAPPED);
    4247             : out:
    4248             :         spin_unlock(vmf->ptl);
    4249             :         return ret;
    4250             : }
    4251             : #else
    4252           0 : vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
    4253             : {
    4254           0 :         return VM_FAULT_FALLBACK;
    4255             : }
    4256             : #endif
    4257             : 
    4258           0 : void do_set_pte(struct vm_fault *vmf, struct page *page, unsigned long addr)
    4259             : {
    4260           0 :         struct vm_area_struct *vma = vmf->vma;
    4261           0 :         bool uffd_wp = pte_marker_uffd_wp(vmf->orig_pte);
    4262           0 :         bool write = vmf->flags & FAULT_FLAG_WRITE;
    4263           0 :         bool prefault = vmf->address != addr;
    4264             :         pte_t entry;
    4265             : 
    4266           0 :         flush_icache_page(vma, page);
    4267           0 :         entry = mk_pte(page, vma->vm_page_prot);
    4268             : 
    4269             :         if (prefault && arch_wants_old_prefaulted_pte())
    4270             :                 entry = pte_mkold(entry);
    4271             :         else
    4272             :                 entry = pte_sw_mkyoung(entry);
    4273             : 
    4274           0 :         if (write)
    4275           0 :                 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
    4276             :         if (unlikely(uffd_wp))
    4277             :                 entry = pte_mkuffd_wp(entry);
    4278             :         /* copy-on-write page */
    4279           0 :         if (write && !(vma->vm_flags & VM_SHARED)) {
    4280           0 :                 inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
    4281           0 :                 page_add_new_anon_rmap(page, vma, addr);
    4282           0 :                 lru_cache_add_inactive_or_unevictable(page, vma);
    4283             :         } else {
    4284           0 :                 inc_mm_counter(vma->vm_mm, mm_counter_file(page));
    4285           0 :                 page_add_file_rmap(page, vma, false);
    4286             :         }
    4287           0 :         set_pte_at(vma->vm_mm, addr, vmf->pte, entry);
    4288           0 : }
    4289             : 
    4290             : static bool vmf_pte_changed(struct vm_fault *vmf)
    4291             : {
    4292           0 :         if (vmf->flags & FAULT_FLAG_ORIG_PTE_VALID)
    4293           0 :                 return !pte_same(*vmf->pte, vmf->orig_pte);
    4294             : 
    4295           0 :         return !pte_none(*vmf->pte);
    4296             : }
    4297             : 
    4298             : /**
    4299             :  * finish_fault - finish page fault once we have prepared the page to fault
    4300             :  *
    4301             :  * @vmf: structure describing the fault
    4302             :  *
    4303             :  * This function handles all that is needed to finish a page fault once the
    4304             :  * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
    4305             :  * given page, adds reverse page mapping, handles memcg charges and LRU
    4306             :  * addition.
    4307             :  *
    4308             :  * The function expects the page to be locked and on success it consumes a
    4309             :  * reference of a page being mapped (for the PTE which maps it).
    4310             :  *
    4311             :  * Return: %0 on success, %VM_FAULT_ code in case of error.
    4312             :  */
    4313           0 : vm_fault_t finish_fault(struct vm_fault *vmf)
    4314             : {
    4315           0 :         struct vm_area_struct *vma = vmf->vma;
    4316             :         struct page *page;
    4317             :         vm_fault_t ret;
    4318             : 
    4319             :         /* Did we COW the page? */
    4320           0 :         if ((vmf->flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
    4321           0 :                 page = vmf->cow_page;
    4322             :         else
    4323           0 :                 page = vmf->page;
    4324             : 
    4325             :         /*
    4326             :          * check even for read faults because we might have lost our CoWed
    4327             :          * page
    4328             :          */
    4329           0 :         if (!(vma->vm_flags & VM_SHARED)) {
    4330           0 :                 ret = check_stable_address_space(vma->vm_mm);
    4331           0 :                 if (ret)
    4332             :                         return ret;
    4333             :         }
    4334             : 
    4335           0 :         if (pmd_none(*vmf->pmd)) {
    4336           0 :                 if (PageTransCompound(page)) {
    4337             :                         ret = do_set_pmd(vmf, page);
    4338             :                         if (ret != VM_FAULT_FALLBACK)
    4339             :                                 return ret;
    4340             :                 }
    4341             : 
    4342           0 :                 if (vmf->prealloc_pte)
    4343           0 :                         pmd_install(vma->vm_mm, vmf->pmd, &vmf->prealloc_pte);
    4344           0 :                 else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd)))
    4345             :                         return VM_FAULT_OOM;
    4346             :         }
    4347             : 
    4348             :         /*
    4349             :          * See comment in handle_pte_fault() for how this scenario happens, we
    4350             :          * need to return NOPAGE so that we drop this page.
    4351             :          */
    4352           0 :         if (pmd_devmap_trans_unstable(vmf->pmd))
    4353             :                 return VM_FAULT_NOPAGE;
    4354             : 
    4355           0 :         vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
    4356             :                                       vmf->address, &vmf->ptl);
    4357             : 
    4358             :         /* Re-check under ptl */
    4359           0 :         if (likely(!vmf_pte_changed(vmf))) {
    4360           0 :                 do_set_pte(vmf, page, vmf->address);
    4361             : 
    4362             :                 /* no need to invalidate: a not-present page won't be cached */
    4363             :                 update_mmu_cache(vma, vmf->address, vmf->pte);
    4364             : 
    4365           0 :                 ret = 0;
    4366             :         } else {
    4367             :                 update_mmu_tlb(vma, vmf->address, vmf->pte);
    4368             :                 ret = VM_FAULT_NOPAGE;
    4369             :         }
    4370             : 
    4371           0 :         pte_unmap_unlock(vmf->pte, vmf->ptl);
    4372           0 :         return ret;
    4373             : }
    4374             : 
    4375             : static unsigned long fault_around_bytes __read_mostly =
    4376             :         rounddown_pow_of_two(65536);
    4377             : 
    4378             : #ifdef CONFIG_DEBUG_FS
    4379             : static int fault_around_bytes_get(void *data, u64 *val)
    4380             : {
    4381             :         *val = fault_around_bytes;
    4382             :         return 0;
    4383             : }
    4384             : 
    4385             : /*
    4386             :  * fault_around_bytes must be rounded down to the nearest page order as it's
    4387             :  * what do_fault_around() expects to see.
    4388             :  */
    4389             : static int fault_around_bytes_set(void *data, u64 val)
    4390             : {
    4391             :         if (val / PAGE_SIZE > PTRS_PER_PTE)
    4392             :                 return -EINVAL;
    4393             :         if (val > PAGE_SIZE)
    4394             :                 fault_around_bytes = rounddown_pow_of_two(val);
    4395             :         else
    4396             :                 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
    4397             :         return 0;
    4398             : }
    4399             : DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
    4400             :                 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
    4401             : 
    4402             : static int __init fault_around_debugfs(void)
    4403             : {
    4404             :         debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
    4405             :                                    &fault_around_bytes_fops);
    4406             :         return 0;
    4407             : }
    4408             : late_initcall(fault_around_debugfs);
    4409             : #endif
    4410             : 
    4411             : /*
    4412             :  * do_fault_around() tries to map few pages around the fault address. The hope
    4413             :  * is that the pages will be needed soon and this will lower the number of
    4414             :  * faults to handle.
    4415             :  *
    4416             :  * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
    4417             :  * not ready to be mapped: not up-to-date, locked, etc.
    4418             :  *
    4419             :  * This function doesn't cross the VMA boundaries, in order to call map_pages()
    4420             :  * only once.
    4421             :  *
    4422             :  * fault_around_bytes defines how many bytes we'll try to map.
    4423             :  * do_fault_around() expects it to be set to a power of two less than or equal
    4424             :  * to PTRS_PER_PTE.
    4425             :  *
    4426             :  * The virtual address of the area that we map is naturally aligned to
    4427             :  * fault_around_bytes rounded down to the machine page size
    4428             :  * (and therefore to page order).  This way it's easier to guarantee
    4429             :  * that we don't cross page table boundaries.
    4430             :  */
    4431           0 : static vm_fault_t do_fault_around(struct vm_fault *vmf)
    4432             : {
    4433           0 :         unsigned long address = vmf->address, nr_pages, mask;
    4434           0 :         pgoff_t start_pgoff = vmf->pgoff;
    4435             :         pgoff_t end_pgoff;
    4436             :         int off;
    4437             : 
    4438           0 :         nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
    4439           0 :         mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
    4440             : 
    4441           0 :         address = max(address & mask, vmf->vma->vm_start);
    4442           0 :         off = ((vmf->address - address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
    4443           0 :         start_pgoff -= off;
    4444             : 
    4445             :         /*
    4446             :          *  end_pgoff is either the end of the page table, the end of
    4447             :          *  the vma or nr_pages from start_pgoff, depending what is nearest.
    4448             :          */
    4449           0 :         end_pgoff = start_pgoff -
    4450           0 :                 ((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
    4451             :                 PTRS_PER_PTE - 1;
    4452           0 :         end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
    4453             :                         start_pgoff + nr_pages - 1);
    4454             : 
    4455           0 :         if (pmd_none(*vmf->pmd)) {
    4456           0 :                 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
    4457           0 :                 if (!vmf->prealloc_pte)
    4458             :                         return VM_FAULT_OOM;
    4459             :         }
    4460             : 
    4461           0 :         return vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
    4462             : }
    4463             : 
    4464             : /* Return true if we should do read fault-around, false otherwise */
    4465             : static inline bool should_fault_around(struct vm_fault *vmf)
    4466             : {
    4467             :         /* No ->map_pages?  No way to fault around... */
    4468           0 :         if (!vmf->vma->vm_ops->map_pages)
    4469             :                 return false;
    4470             : 
    4471           0 :         if (uffd_disable_fault_around(vmf->vma))
    4472             :                 return false;
    4473             : 
    4474           0 :         return fault_around_bytes >> PAGE_SHIFT > 1;
    4475             : }
    4476             : 
    4477           0 : static vm_fault_t do_read_fault(struct vm_fault *vmf)
    4478             : {
    4479           0 :         vm_fault_t ret = 0;
    4480             : 
    4481             :         /*
    4482             :          * Let's call ->map_pages() first and use ->fault() as fallback
    4483             :          * if page by the offset is not ready to be mapped (cold cache or
    4484             :          * something).
    4485             :          */
    4486           0 :         if (should_fault_around(vmf)) {
    4487           0 :                 ret = do_fault_around(vmf);
    4488           0 :                 if (ret)
    4489             :                         return ret;
    4490             :         }
    4491             : 
    4492           0 :         ret = __do_fault(vmf);
    4493           0 :         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
    4494             :                 return ret;
    4495             : 
    4496           0 :         ret |= finish_fault(vmf);
    4497           0 :         unlock_page(vmf->page);
    4498           0 :         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
    4499           0 :                 put_page(vmf->page);
    4500             :         return ret;
    4501             : }
    4502             : 
    4503           0 : static vm_fault_t do_cow_fault(struct vm_fault *vmf)
    4504             : {
    4505           0 :         struct vm_area_struct *vma = vmf->vma;
    4506             :         vm_fault_t ret;
    4507             : 
    4508           0 :         if (unlikely(anon_vma_prepare(vma)))
    4509             :                 return VM_FAULT_OOM;
    4510             : 
    4511           0 :         vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
    4512           0 :         if (!vmf->cow_page)
    4513             :                 return VM_FAULT_OOM;
    4514             : 
    4515           0 :         if (mem_cgroup_charge(page_folio(vmf->cow_page), vma->vm_mm,
    4516             :                                 GFP_KERNEL)) {
    4517             :                 put_page(vmf->cow_page);
    4518             :                 return VM_FAULT_OOM;
    4519             :         }
    4520           0 :         cgroup_throttle_swaprate(vmf->cow_page, GFP_KERNEL);
    4521             : 
    4522           0 :         ret = __do_fault(vmf);
    4523           0 :         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
    4524             :                 goto uncharge_out;
    4525           0 :         if (ret & VM_FAULT_DONE_COW)
    4526             :                 return ret;
    4527             : 
    4528           0 :         copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
    4529           0 :         __SetPageUptodate(vmf->cow_page);
    4530             : 
    4531           0 :         ret |= finish_fault(vmf);
    4532           0 :         unlock_page(vmf->page);
    4533           0 :         put_page(vmf->page);
    4534           0 :         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
    4535             :                 goto uncharge_out;
    4536             :         return ret;
    4537             : uncharge_out:
    4538           0 :         put_page(vmf->cow_page);
    4539           0 :         return ret;
    4540             : }
    4541             : 
    4542           0 : static vm_fault_t do_shared_fault(struct vm_fault *vmf)
    4543             : {
    4544           0 :         struct vm_area_struct *vma = vmf->vma;
    4545             :         vm_fault_t ret, tmp;
    4546             : 
    4547           0 :         ret = __do_fault(vmf);
    4548           0 :         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
    4549             :                 return ret;
    4550             : 
    4551             :         /*
    4552             :          * Check if the backing address space wants to know that the page is
    4553             :          * about to become writable
    4554             :          */
    4555           0 :         if (vma->vm_ops->page_mkwrite) {
    4556           0 :                 unlock_page(vmf->page);
    4557           0 :                 tmp = do_page_mkwrite(vmf);
    4558           0 :                 if (unlikely(!tmp ||
    4559             :                                 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
    4560           0 :                         put_page(vmf->page);
    4561           0 :                         return tmp;
    4562             :                 }
    4563             :         }
    4564             : 
    4565           0 :         ret |= finish_fault(vmf);
    4566           0 :         if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
    4567             :                                         VM_FAULT_RETRY))) {
    4568           0 :                 unlock_page(vmf->page);
    4569           0 :                 put_page(vmf->page);
    4570           0 :                 return ret;
    4571             :         }
    4572             : 
    4573           0 :         ret |= fault_dirty_shared_page(vmf);
    4574           0 :         return ret;
    4575             : }
    4576             : 
    4577             : /*
    4578             :  * We enter with non-exclusive mmap_lock (to exclude vma changes,
    4579             :  * but allow concurrent faults).
    4580             :  * The mmap_lock may have been released depending on flags and our
    4581             :  * return value.  See filemap_fault() and __folio_lock_or_retry().
    4582             :  * If mmap_lock is released, vma may become invalid (for example
    4583             :  * by other thread calling munmap()).
    4584             :  */
    4585           0 : static vm_fault_t do_fault(struct vm_fault *vmf)
    4586             : {
    4587           0 :         struct vm_area_struct *vma = vmf->vma;
    4588           0 :         struct mm_struct *vm_mm = vma->vm_mm;
    4589             :         vm_fault_t ret;
    4590             : 
    4591             :         /*
    4592             :          * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
    4593             :          */
    4594           0 :         if (!vma->vm_ops->fault) {
    4595             :                 /*
    4596             :                  * If we find a migration pmd entry or a none pmd entry, which
    4597             :                  * should never happen, return SIGBUS
    4598             :                  */
    4599           0 :                 if (unlikely(!pmd_present(*vmf->pmd)))
    4600             :                         ret = VM_FAULT_SIGBUS;
    4601             :                 else {
    4602           0 :                         vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm,
    4603             :                                                        vmf->pmd,
    4604             :                                                        vmf->address,
    4605             :                                                        &vmf->ptl);
    4606             :                         /*
    4607             :                          * Make sure this is not a temporary clearing of pte
    4608             :                          * by holding ptl and checking again. A R/M/W update
    4609             :                          * of pte involves: take ptl, clearing the pte so that
    4610             :                          * we don't have concurrent modification by hardware
    4611             :                          * followed by an update.
    4612             :                          */
    4613           0 :                         if (unlikely(pte_none(*vmf->pte)))
    4614             :                                 ret = VM_FAULT_SIGBUS;
    4615             :                         else
    4616           0 :                                 ret = VM_FAULT_NOPAGE;
    4617             : 
    4618           0 :                         pte_unmap_unlock(vmf->pte, vmf->ptl);
    4619             :                 }
    4620           0 :         } else if (!(vmf->flags & FAULT_FLAG_WRITE))
    4621           0 :                 ret = do_read_fault(vmf);
    4622           0 :         else if (!(vma->vm_flags & VM_SHARED))
    4623           0 :                 ret = do_cow_fault(vmf);
    4624             :         else
    4625           0 :                 ret = do_shared_fault(vmf);
    4626             : 
    4627             :         /* preallocated pagetable is unused: free it */
    4628           0 :         if (vmf->prealloc_pte) {
    4629           0 :                 pte_free(vm_mm, vmf->prealloc_pte);
    4630           0 :                 vmf->prealloc_pte = NULL;
    4631             :         }
    4632           0 :         return ret;
    4633             : }
    4634             : 
    4635           0 : int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
    4636             :                       unsigned long addr, int page_nid, int *flags)
    4637             : {
    4638           0 :         get_page(page);
    4639             : 
    4640             :         count_vm_numa_event(NUMA_HINT_FAULTS);
    4641           0 :         if (page_nid == numa_node_id()) {
    4642             :                 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
    4643           0 :                 *flags |= TNF_FAULT_LOCAL;
    4644             :         }
    4645             : 
    4646           0 :         return mpol_misplaced(page, vma, addr);
    4647             : }
    4648             : 
    4649             : static vm_fault_t do_numa_page(struct vm_fault *vmf)
    4650             : {
    4651             :         struct vm_area_struct *vma = vmf->vma;
    4652             :         struct page *page = NULL;
    4653             :         int page_nid = NUMA_NO_NODE;
    4654             :         bool writable = false;
    4655             :         int last_cpupid;
    4656             :         int target_nid;
    4657             :         pte_t pte, old_pte;
    4658             :         int flags = 0;
    4659             : 
    4660             :         /*
    4661             :          * The "pte" at this point cannot be used safely without
    4662             :          * validation through pte_unmap_same(). It's of NUMA type but
    4663             :          * the pfn may be screwed if the read is non atomic.
    4664             :          */
    4665             :         vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
    4666             :         spin_lock(vmf->ptl);
    4667             :         if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
    4668             :                 pte_unmap_unlock(vmf->pte, vmf->ptl);
    4669             :                 goto out;
    4670             :         }
    4671             : 
    4672             :         /* Get the normal PTE  */
    4673             :         old_pte = ptep_get(vmf->pte);
    4674             :         pte = pte_modify(old_pte, vma->vm_page_prot);
    4675             : 
    4676             :         /*
    4677             :          * Detect now whether the PTE could be writable; this information
    4678             :          * is only valid while holding the PT lock.
    4679             :          */
    4680             :         writable = pte_write(pte);
    4681             :         if (!writable && vma_wants_manual_pte_write_upgrade(vma) &&
    4682             :             can_change_pte_writable(vma, vmf->address, pte))
    4683             :                 writable = true;
    4684             : 
    4685             :         page = vm_normal_page(vma, vmf->address, pte);
    4686             :         if (!page || is_zone_device_page(page))
    4687             :                 goto out_map;
    4688             : 
    4689             :         /* TODO: handle PTE-mapped THP */
    4690             :         if (PageCompound(page))
    4691             :                 goto out_map;
    4692             : 
    4693             :         /*
    4694             :          * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
    4695             :          * much anyway since they can be in shared cache state. This misses
    4696             :          * the case where a mapping is writable but the process never writes
    4697             :          * to it but pte_write gets cleared during protection updates and
    4698             :          * pte_dirty has unpredictable behaviour between PTE scan updates,
    4699             :          * background writeback, dirty balancing and application behaviour.
    4700             :          */
    4701             :         if (!writable)
    4702             :                 flags |= TNF_NO_GROUP;
    4703             : 
    4704             :         /*
    4705             :          * Flag if the page is shared between multiple address spaces. This
    4706             :          * is later used when determining whether to group tasks together
    4707             :          */
    4708             :         if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
    4709             :                 flags |= TNF_SHARED;
    4710             : 
    4711             :         page_nid = page_to_nid(page);
    4712             :         /*
    4713             :          * For memory tiering mode, cpupid of slow memory page is used
    4714             :          * to record page access time.  So use default value.
    4715             :          */
    4716             :         if ((sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) &&
    4717             :             !node_is_toptier(page_nid))
    4718             :                 last_cpupid = (-1 & LAST_CPUPID_MASK);
    4719             :         else
    4720             :                 last_cpupid = page_cpupid_last(page);
    4721             :         target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
    4722             :                         &flags);
    4723             :         if (target_nid == NUMA_NO_NODE) {
    4724             :                 put_page(page);
    4725             :                 goto out_map;
    4726             :         }
    4727             :         pte_unmap_unlock(vmf->pte, vmf->ptl);
    4728             :         writable = false;
    4729             : 
    4730             :         /* Migrate to the requested node */
    4731             :         if (migrate_misplaced_page(page, vma, target_nid)) {
    4732             :                 page_nid = target_nid;
    4733             :                 flags |= TNF_MIGRATED;
    4734             :         } else {
    4735             :                 flags |= TNF_MIGRATE_FAIL;
    4736             :                 vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
    4737             :                 spin_lock(vmf->ptl);
    4738             :                 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
    4739             :                         pte_unmap_unlock(vmf->pte, vmf->ptl);
    4740             :                         goto out;
    4741             :                 }
    4742             :                 goto out_map;
    4743             :         }
    4744             : 
    4745             : out:
    4746             :         if (page_nid != NUMA_NO_NODE)
    4747             :                 task_numa_fault(last_cpupid, page_nid, 1, flags);
    4748             :         return 0;
    4749             : out_map:
    4750             :         /*
    4751             :          * Make it present again, depending on how arch implements
    4752             :          * non-accessible ptes, some can allow access by kernel mode.
    4753             :          */
    4754             :         old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte);
    4755             :         pte = pte_modify(old_pte, vma->vm_page_prot);
    4756             :         pte = pte_mkyoung(pte);
    4757             :         if (writable)
    4758             :                 pte = pte_mkwrite(pte);
    4759             :         ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte);
    4760             :         update_mmu_cache(vma, vmf->address, vmf->pte);
    4761             :         pte_unmap_unlock(vmf->pte, vmf->ptl);
    4762             :         goto out;
    4763             : }
    4764             : 
    4765             : static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
    4766             : {
    4767             :         if (vma_is_anonymous(vmf->vma))
    4768             :                 return do_huge_pmd_anonymous_page(vmf);
    4769             :         if (vmf->vma->vm_ops->huge_fault)
    4770             :                 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
    4771             :         return VM_FAULT_FALLBACK;
    4772             : }
    4773             : 
    4774             : /* `inline' is required to avoid gcc 4.1.2 build error */
    4775             : static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf)
    4776             : {
    4777             :         const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
    4778             :         vm_fault_t ret;
    4779             : 
    4780             :         if (vma_is_anonymous(vmf->vma)) {
    4781             :                 if (likely(!unshare) &&
    4782             :                     userfaultfd_huge_pmd_wp(vmf->vma, vmf->orig_pmd))
    4783             :                         return handle_userfault(vmf, VM_UFFD_WP);
    4784             :                 return do_huge_pmd_wp_page(vmf);
    4785             :         }
    4786             : 
    4787             :         if (vmf->vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) {
    4788             :                 if (vmf->vma->vm_ops->huge_fault) {
    4789             :                         ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
    4790             :                         if (!(ret & VM_FAULT_FALLBACK))
    4791             :                                 return ret;
    4792             :                 }
    4793             :         }
    4794             : 
    4795             :         /* COW or write-notify handled on pte level: split pmd. */
    4796             :         __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
    4797             : 
    4798             :         return VM_FAULT_FALLBACK;
    4799             : }
    4800             : 
    4801             : static vm_fault_t create_huge_pud(struct vm_fault *vmf)
    4802             : {
    4803             : #if defined(CONFIG_TRANSPARENT_HUGEPAGE) &&                     \
    4804             :         defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
    4805             :         /* No support for anonymous transparent PUD pages yet */
    4806             :         if (vma_is_anonymous(vmf->vma))
    4807             :                 return VM_FAULT_FALLBACK;
    4808             :         if (vmf->vma->vm_ops->huge_fault)
    4809             :                 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
    4810             : #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
    4811             :         return VM_FAULT_FALLBACK;
    4812             : }
    4813             : 
    4814             : static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
    4815             : {
    4816             : #if defined(CONFIG_TRANSPARENT_HUGEPAGE) &&                     \
    4817             :         defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
    4818             :         vm_fault_t ret;
    4819             : 
    4820             :         /* No support for anonymous transparent PUD pages yet */
    4821             :         if (vma_is_anonymous(vmf->vma))
    4822             :                 goto split;
    4823             :         if (vmf->vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) {
    4824             :                 if (vmf->vma->vm_ops->huge_fault) {
    4825             :                         ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
    4826             :                         if (!(ret & VM_FAULT_FALLBACK))
    4827             :                                 return ret;
    4828             :                 }
    4829             :         }
    4830             : split:
    4831             :         /* COW or write-notify not handled on PUD level: split pud.*/
    4832             :         __split_huge_pud(vmf->vma, vmf->pud, vmf->address);
    4833             : #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
    4834             :         return VM_FAULT_FALLBACK;
    4835             : }
    4836             : 
    4837             : /*
    4838             :  * These routines also need to handle stuff like marking pages dirty
    4839             :  * and/or accessed for architectures that don't do it in hardware (most
    4840             :  * RISC architectures).  The early dirtying is also good on the i386.
    4841             :  *
    4842             :  * There is also a hook called "update_mmu_cache()" that architectures
    4843             :  * with external mmu caches can use to update those (ie the Sparc or
    4844             :  * PowerPC hashed page tables that act as extended TLBs).
    4845             :  *
    4846             :  * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow
    4847             :  * concurrent faults).
    4848             :  *
    4849             :  * The mmap_lock may have been released depending on flags and our return value.
    4850             :  * See filemap_fault() and __folio_lock_or_retry().
    4851             :  */
    4852           0 : static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
    4853             : {
    4854             :         pte_t entry;
    4855             : 
    4856           0 :         if (unlikely(pmd_none(*vmf->pmd))) {
    4857             :                 /*
    4858             :                  * Leave __pte_alloc() until later: because vm_ops->fault may
    4859             :                  * want to allocate huge page, and if we expose page table
    4860             :                  * for an instant, it will be difficult to retract from
    4861             :                  * concurrent faults and from rmap lookups.
    4862             :                  */
    4863           0 :                 vmf->pte = NULL;
    4864           0 :                 vmf->flags &= ~FAULT_FLAG_ORIG_PTE_VALID;
    4865             :         } else {
    4866             :                 /*
    4867             :                  * If a huge pmd materialized under us just retry later.  Use
    4868             :                  * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead
    4869             :                  * of pmd_trans_huge() to ensure the pmd didn't become
    4870             :                  * pmd_trans_huge under us and then back to pmd_none, as a
    4871             :                  * result of MADV_DONTNEED running immediately after a huge pmd
    4872             :                  * fault in a different thread of this mm, in turn leading to a
    4873             :                  * misleading pmd_trans_huge() retval. All we have to ensure is
    4874             :                  * that it is a regular pmd that we can walk with
    4875             :                  * pte_offset_map() and we can do that through an atomic read
    4876             :                  * in C, which is what pmd_trans_unstable() provides.
    4877             :                  */
    4878           0 :                 if (pmd_devmap_trans_unstable(vmf->pmd))
    4879             :                         return 0;
    4880             :                 /*
    4881             :                  * A regular pmd is established and it can't morph into a huge
    4882             :                  * pmd from under us anymore at this point because we hold the
    4883             :                  * mmap_lock read mode and khugepaged takes it in write mode.
    4884             :                  * So now it's safe to run pte_offset_map().
    4885             :                  */
    4886           0 :                 vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
    4887           0 :                 vmf->orig_pte = *vmf->pte;
    4888           0 :                 vmf->flags |= FAULT_FLAG_ORIG_PTE_VALID;
    4889             : 
    4890             :                 /*
    4891             :                  * some architectures can have larger ptes than wordsize,
    4892             :                  * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
    4893             :                  * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic
    4894             :                  * accesses.  The code below just needs a consistent view
    4895             :                  * for the ifs and we later double check anyway with the
    4896             :                  * ptl lock held. So here a barrier will do.
    4897             :                  */
    4898           0 :                 barrier();
    4899           0 :                 if (pte_none(vmf->orig_pte)) {
    4900             :                         pte_unmap(vmf->pte);
    4901           0 :                         vmf->pte = NULL;
    4902             :                 }
    4903             :         }
    4904             : 
    4905           0 :         if (!vmf->pte) {
    4906           0 :                 if (vma_is_anonymous(vmf->vma))
    4907           0 :                         return do_anonymous_page(vmf);
    4908             :                 else
    4909           0 :                         return do_fault(vmf);
    4910             :         }
    4911             : 
    4912           0 :         if (!pte_present(vmf->orig_pte))
    4913           0 :                 return do_swap_page(vmf);
    4914             : 
    4915           0 :         if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
    4916             :                 return do_numa_page(vmf);
    4917             : 
    4918           0 :         vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
    4919           0 :         spin_lock(vmf->ptl);
    4920           0 :         entry = vmf->orig_pte;
    4921           0 :         if (unlikely(!pte_same(*vmf->pte, entry))) {
    4922             :                 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
    4923             :                 goto unlock;
    4924             :         }
    4925           0 :         if (vmf->flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) {
    4926           0 :                 if (!pte_write(entry))
    4927           0 :                         return do_wp_page(vmf);
    4928           0 :                 else if (likely(vmf->flags & FAULT_FLAG_WRITE))
    4929             :                         entry = pte_mkdirty(entry);
    4930             :         }
    4931           0 :         entry = pte_mkyoung(entry);
    4932           0 :         if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
    4933           0 :                                 vmf->flags & FAULT_FLAG_WRITE)) {
    4934             :                 update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
    4935             :         } else {
    4936             :                 /* Skip spurious TLB flush for retried page fault */
    4937           0 :                 if (vmf->flags & FAULT_FLAG_TRIED)
    4938             :                         goto unlock;
    4939             :                 /*
    4940             :                  * This is needed only for protection faults but the arch code
    4941             :                  * is not yet telling us if this is a protection fault or not.
    4942             :                  * This still avoids useless tlb flushes for .text page faults
    4943             :                  * with threads.
    4944             :                  */
    4945           0 :                 if (vmf->flags & FAULT_FLAG_WRITE)
    4946           0 :                         flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
    4947             :         }
    4948             : unlock:
    4949           0 :         pte_unmap_unlock(vmf->pte, vmf->ptl);
    4950           0 :         return 0;
    4951             : }
    4952             : 
    4953             : /*
    4954             :  * By the time we get here, we already hold the mm semaphore
    4955             :  *
    4956             :  * The mmap_lock may have been released depending on flags and our
    4957             :  * return value.  See filemap_fault() and __folio_lock_or_retry().
    4958             :  */
    4959           0 : static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
    4960             :                 unsigned long address, unsigned int flags)
    4961             : {
    4962           0 :         struct vm_fault vmf = {
    4963             :                 .vma = vma,
    4964           0 :                 .address = address & PAGE_MASK,
    4965             :                 .real_address = address,
    4966             :                 .flags = flags,
    4967           0 :                 .pgoff = linear_page_index(vma, address),
    4968           0 :                 .gfp_mask = __get_fault_gfp_mask(vma),
    4969             :         };
    4970           0 :         struct mm_struct *mm = vma->vm_mm;
    4971           0 :         unsigned long vm_flags = vma->vm_flags;
    4972             :         pgd_t *pgd;
    4973             :         p4d_t *p4d;
    4974             :         vm_fault_t ret;
    4975             : 
    4976           0 :         pgd = pgd_offset(mm, address);
    4977           0 :         p4d = p4d_alloc(mm, pgd, address);
    4978           0 :         if (!p4d)
    4979             :                 return VM_FAULT_OOM;
    4980             : 
    4981           0 :         vmf.pud = pud_alloc(mm, p4d, address);
    4982             :         if (!vmf.pud)
    4983             :                 return VM_FAULT_OOM;
    4984             : retry_pud:
    4985             :         if (pud_none(*vmf.pud) &&
    4986             :             hugepage_vma_check(vma, vm_flags, false, true, true)) {
    4987             :                 ret = create_huge_pud(&vmf);
    4988             :                 if (!(ret & VM_FAULT_FALLBACK))
    4989             :                         return ret;
    4990             :         } else {
    4991             :                 pud_t orig_pud = *vmf.pud;
    4992             : 
    4993           0 :                 barrier();
    4994           0 :                 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
    4995             : 
    4996             :                         /*
    4997             :                          * TODO once we support anonymous PUDs: NUMA case and
    4998             :                          * FAULT_FLAG_UNSHARE handling.
    4999             :                          */
    5000             :                         if ((flags & FAULT_FLAG_WRITE) && !pud_write(orig_pud)) {
    5001             :                                 ret = wp_huge_pud(&vmf, orig_pud);
    5002             :                                 if (!(ret & VM_FAULT_FALLBACK))
    5003             :                                         return ret;
    5004             :                         } else {
    5005             :                                 huge_pud_set_accessed(&vmf, orig_pud);
    5006             :                                 return 0;
    5007             :                         }
    5008             :                 }
    5009             :         }
    5010             : 
    5011           0 :         vmf.pmd = pmd_alloc(mm, vmf.pud, address);
    5012           0 :         if (!vmf.pmd)
    5013             :                 return VM_FAULT_OOM;
    5014             : 
    5015             :         /* Huge pud page fault raced with pmd_alloc? */
    5016           0 :         if (pud_trans_unstable(vmf.pud))
    5017             :                 goto retry_pud;
    5018             : 
    5019             :         if (pmd_none(*vmf.pmd) &&
    5020             :             hugepage_vma_check(vma, vm_flags, false, true, true)) {
    5021             :                 ret = create_huge_pmd(&vmf);
    5022             :                 if (!(ret & VM_FAULT_FALLBACK))
    5023             :                         return ret;
    5024             :         } else {
    5025           0 :                 vmf.orig_pmd = *vmf.pmd;
    5026             : 
    5027           0 :                 barrier();
    5028           0 :                 if (unlikely(is_swap_pmd(vmf.orig_pmd))) {
    5029             :                         VM_BUG_ON(thp_migration_supported() &&
    5030             :                                           !is_pmd_migration_entry(vmf.orig_pmd));
    5031             :                         if (is_pmd_migration_entry(vmf.orig_pmd))
    5032             :                                 pmd_migration_entry_wait(mm, vmf.pmd);
    5033             :                         return 0;
    5034             :                 }
    5035           0 :                 if (pmd_trans_huge(vmf.orig_pmd) || pmd_devmap(vmf.orig_pmd)) {
    5036             :                         if (pmd_protnone(vmf.orig_pmd) && vma_is_accessible(vma))
    5037             :                                 return do_huge_pmd_numa_page(&vmf);
    5038             : 
    5039             :                         if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) &&
    5040             :                             !pmd_write(vmf.orig_pmd)) {
    5041             :                                 ret = wp_huge_pmd(&vmf);
    5042             :                                 if (!(ret & VM_FAULT_FALLBACK))
    5043             :                                         return ret;
    5044             :                         } else {
    5045             :                                 huge_pmd_set_accessed(&vmf);
    5046             :                                 return 0;
    5047             :                         }
    5048             :                 }
    5049             :         }
    5050             : 
    5051           0 :         return handle_pte_fault(&vmf);
    5052             : }
    5053             : 
    5054             : /**
    5055             :  * mm_account_fault - Do page fault accounting
    5056             :  *
    5057             :  * @regs: the pt_regs struct pointer.  When set to NULL, will skip accounting
    5058             :  *        of perf event counters, but we'll still do the per-task accounting to
    5059             :  *        the task who triggered this page fault.
    5060             :  * @address: the faulted address.
    5061             :  * @flags: the fault flags.
    5062             :  * @ret: the fault retcode.
    5063             :  *
    5064             :  * This will take care of most of the page fault accounting.  Meanwhile, it
    5065             :  * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter
    5066             :  * updates.  However, note that the handling of PERF_COUNT_SW_PAGE_FAULTS should
    5067             :  * still be in per-arch page fault handlers at the entry of page fault.
    5068             :  */
    5069           0 : static inline void mm_account_fault(struct pt_regs *regs,
    5070             :                                     unsigned long address, unsigned int flags,
    5071             :                                     vm_fault_t ret)
    5072             : {
    5073             :         bool major;
    5074             : 
    5075             :         /*
    5076             :          * We don't do accounting for some specific faults:
    5077             :          *
    5078             :          * - Unsuccessful faults (e.g. when the address wasn't valid).  That
    5079             :          *   includes arch_vma_access_permitted() failing before reaching here.
    5080             :          *   So this is not a "this many hardware page faults" counter.  We
    5081             :          *   should use the hw profiling for that.
    5082             :          *
    5083             :          * - Incomplete faults (VM_FAULT_RETRY).  They will only be counted
    5084             :          *   once they're completed.
    5085             :          */
    5086           0 :         if (ret & (VM_FAULT_ERROR | VM_FAULT_RETRY))
    5087             :                 return;
    5088             : 
    5089             :         /*
    5090             :          * We define the fault as a major fault when the final successful fault
    5091             :          * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't
    5092             :          * handle it immediately previously).
    5093             :          */
    5094           0 :         major = (ret & VM_FAULT_MAJOR) || (flags & FAULT_FLAG_TRIED);
    5095             : 
    5096           0 :         if (major)
    5097           0 :                 current->maj_flt++;
    5098             :         else
    5099           0 :                 current->min_flt++;
    5100             : 
    5101             :         /*
    5102             :          * If the fault is done for GUP, regs will be NULL.  We only do the
    5103             :          * accounting for the per thread fault counters who triggered the
    5104             :          * fault, and we skip the perf event updates.
    5105             :          */
    5106             :         if (!regs)
    5107             :                 return;
    5108             : 
    5109             :         if (major)
    5110             :                 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
    5111             :         else
    5112             :                 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
    5113             : }
    5114             : 
    5115             : #ifdef CONFIG_LRU_GEN
    5116             : static void lru_gen_enter_fault(struct vm_area_struct *vma)
    5117             : {
    5118             :         /* the LRU algorithm only applies to accesses with recency */
    5119             :         current->in_lru_fault = vma_has_recency(vma);
    5120             : }
    5121             : 
    5122             : static void lru_gen_exit_fault(void)
    5123             : {
    5124             :         current->in_lru_fault = false;
    5125             : }
    5126             : #else
    5127             : static void lru_gen_enter_fault(struct vm_area_struct *vma)
    5128             : {
    5129             : }
    5130             : 
    5131             : static void lru_gen_exit_fault(void)
    5132             : {
    5133             : }
    5134             : #endif /* CONFIG_LRU_GEN */
    5135             : 
    5136           0 : static vm_fault_t sanitize_fault_flags(struct vm_area_struct *vma,
    5137             :                                        unsigned int *flags)
    5138             : {
    5139           0 :         if (unlikely(*flags & FAULT_FLAG_UNSHARE)) {
    5140           0 :                 if (WARN_ON_ONCE(*flags & FAULT_FLAG_WRITE))
    5141             :                         return VM_FAULT_SIGSEGV;
    5142             :                 /*
    5143             :                  * FAULT_FLAG_UNSHARE only applies to COW mappings. Let's
    5144             :                  * just treat it like an ordinary read-fault otherwise.
    5145             :                  */
    5146           0 :                 if (!is_cow_mapping(vma->vm_flags))
    5147           0 :                         *flags &= ~FAULT_FLAG_UNSHARE;
    5148           0 :         } else if (*flags & FAULT_FLAG_WRITE) {
    5149             :                 /* Write faults on read-only mappings are impossible ... */
    5150           0 :                 if (WARN_ON_ONCE(!(vma->vm_flags & VM_MAYWRITE)))
    5151             :                         return VM_FAULT_SIGSEGV;
    5152             :                 /* ... and FOLL_FORCE only applies to COW mappings. */
    5153           0 :                 if (WARN_ON_ONCE(!(vma->vm_flags & VM_WRITE) &&
    5154             :                                  !is_cow_mapping(vma->vm_flags)))
    5155             :                         return VM_FAULT_SIGSEGV;
    5156             :         }
    5157             :         return 0;
    5158             : }
    5159             : 
    5160             : /*
    5161             :  * By the time we get here, we already hold the mm semaphore
    5162             :  *
    5163             :  * The mmap_lock may have been released depending on flags and our
    5164             :  * return value.  See filemap_fault() and __folio_lock_or_retry().
    5165             :  */
    5166           0 : vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
    5167             :                            unsigned int flags, struct pt_regs *regs)
    5168             : {
    5169             :         vm_fault_t ret;
    5170             : 
    5171           0 :         __set_current_state(TASK_RUNNING);
    5172             : 
    5173           0 :         count_vm_event(PGFAULT);
    5174           0 :         count_memcg_event_mm(vma->vm_mm, PGFAULT);
    5175             : 
    5176           0 :         ret = sanitize_fault_flags(vma, &flags);
    5177           0 :         if (ret)
    5178             :                 return ret;
    5179             : 
    5180           0 :         if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
    5181           0 :                                             flags & FAULT_FLAG_INSTRUCTION,
    5182           0 :                                             flags & FAULT_FLAG_REMOTE))
    5183             :                 return VM_FAULT_SIGSEGV;
    5184             : 
    5185             :         /*
    5186             :          * Enable the memcg OOM handling for faults triggered in user
    5187             :          * space.  Kernel faults are handled more gracefully.
    5188             :          */
    5189             :         if (flags & FAULT_FLAG_USER)
    5190             :                 mem_cgroup_enter_user_fault();
    5191             : 
    5192           0 :         lru_gen_enter_fault(vma);
    5193             : 
    5194           0 :         if (unlikely(is_vm_hugetlb_page(vma)))
    5195             :                 ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
    5196             :         else
    5197           0 :                 ret = __handle_mm_fault(vma, address, flags);
    5198             : 
    5199             :         lru_gen_exit_fault();
    5200             : 
    5201           0 :         if (flags & FAULT_FLAG_USER) {
    5202             :                 mem_cgroup_exit_user_fault();
    5203             :                 /*
    5204             :                  * The task may have entered a memcg OOM situation but
    5205             :                  * if the allocation error was handled gracefully (no
    5206             :                  * VM_FAULT_OOM), there is no need to kill anything.
    5207             :                  * Just clean up the OOM state peacefully.
    5208             :                  */
    5209           0 :                 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
    5210             :                         mem_cgroup_oom_synchronize(false);
    5211             :         }
    5212             : 
    5213           0 :         mm_account_fault(regs, address, flags, ret);
    5214             : 
    5215           0 :         return ret;
    5216             : }
    5217             : EXPORT_SYMBOL_GPL(handle_mm_fault);
    5218             : 
    5219             : #ifndef __PAGETABLE_P4D_FOLDED
    5220             : /*
    5221             :  * Allocate p4d page table.
    5222             :  * We've already handled the fast-path in-line.
    5223             :  */
    5224             : int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
    5225             : {
    5226             :         p4d_t *new = p4d_alloc_one(mm, address);
    5227             :         if (!new)
    5228             :                 return -ENOMEM;
    5229             : 
    5230             :         spin_lock(&mm->page_table_lock);
    5231             :         if (pgd_present(*pgd)) {        /* Another has populated it */
    5232             :                 p4d_free(mm, new);
    5233             :         } else {
    5234             :                 smp_wmb(); /* See comment in pmd_install() */
    5235             :                 pgd_populate(mm, pgd, new);
    5236             :         }
    5237             :         spin_unlock(&mm->page_table_lock);
    5238             :         return 0;
    5239             : }
    5240             : #endif /* __PAGETABLE_P4D_FOLDED */
    5241             : 
    5242             : #ifndef __PAGETABLE_PUD_FOLDED
    5243             : /*
    5244             :  * Allocate page upper directory.
    5245             :  * We've already handled the fast-path in-line.
    5246             :  */
    5247             : int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
    5248             : {
    5249             :         pud_t *new = pud_alloc_one(mm, address);
    5250             :         if (!new)
    5251             :                 return -ENOMEM;
    5252             : 
    5253             :         spin_lock(&mm->page_table_lock);
    5254             :         if (!p4d_present(*p4d)) {
    5255             :                 mm_inc_nr_puds(mm);
    5256             :                 smp_wmb(); /* See comment in pmd_install() */
    5257             :                 p4d_populate(mm, p4d, new);
    5258             :         } else  /* Another has populated it */
    5259             :                 pud_free(mm, new);
    5260             :         spin_unlock(&mm->page_table_lock);
    5261             :         return 0;
    5262             : }
    5263             : #endif /* __PAGETABLE_PUD_FOLDED */
    5264             : 
    5265             : #ifndef __PAGETABLE_PMD_FOLDED
    5266             : /*
    5267             :  * Allocate page middle directory.
    5268             :  * We've already handled the fast-path in-line.
    5269             :  */
    5270           1 : int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
    5271             : {
    5272             :         spinlock_t *ptl;
    5273           1 :         pmd_t *new = pmd_alloc_one(mm, address);
    5274           1 :         if (!new)
    5275             :                 return -ENOMEM;
    5276             : 
    5277           2 :         ptl = pud_lock(mm, pud);
    5278           1 :         if (!pud_present(*pud)) {
    5279           1 :                 mm_inc_nr_pmds(mm);
    5280           1 :                 smp_wmb(); /* See comment in pmd_install() */
    5281           1 :                 pud_populate(mm, pud, new);
    5282             :         } else {        /* Another has populated it */
    5283           0 :                 pmd_free(mm, new);
    5284             :         }
    5285           1 :         spin_unlock(ptl);
    5286           1 :         return 0;
    5287             : }
    5288             : #endif /* __PAGETABLE_PMD_FOLDED */
    5289             : 
    5290             : /**
    5291             :  * follow_pte - look up PTE at a user virtual address
    5292             :  * @mm: the mm_struct of the target address space
    5293             :  * @address: user virtual address
    5294             :  * @ptepp: location to store found PTE
    5295             :  * @ptlp: location to store the lock for the PTE
    5296             :  *
    5297             :  * On a successful return, the pointer to the PTE is stored in @ptepp;
    5298             :  * the corresponding lock is taken and its location is stored in @ptlp.
    5299             :  * The contents of the PTE are only stable until @ptlp is released;
    5300             :  * any further use, if any, must be protected against invalidation
    5301             :  * with MMU notifiers.
    5302             :  *
    5303             :  * Only IO mappings and raw PFN mappings are allowed.  The mmap semaphore
    5304             :  * should be taken for read.
    5305             :  *
    5306             :  * KVM uses this function.  While it is arguably less bad than ``follow_pfn``,
    5307             :  * it is not a good general-purpose API.
    5308             :  *
    5309             :  * Return: zero on success, -ve otherwise.
    5310             :  */
    5311           0 : int follow_pte(struct mm_struct *mm, unsigned long address,
    5312             :                pte_t **ptepp, spinlock_t **ptlp)
    5313             : {
    5314             :         pgd_t *pgd;
    5315             :         p4d_t *p4d;
    5316             :         pud_t *pud;
    5317             :         pmd_t *pmd;
    5318             :         pte_t *ptep;
    5319             : 
    5320           0 :         pgd = pgd_offset(mm, address);
    5321             :         if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
    5322             :                 goto out;
    5323             : 
    5324           0 :         p4d = p4d_offset(pgd, address);
    5325             :         if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
    5326             :                 goto out;
    5327             : 
    5328           0 :         pud = pud_offset(p4d, address);
    5329           0 :         if (pud_none(*pud) || unlikely(pud_bad(*pud)))
    5330             :                 goto out;
    5331             : 
    5332           0 :         pmd = pmd_offset(pud, address);
    5333             :         VM_BUG_ON(pmd_trans_huge(*pmd));
    5334             : 
    5335           0 :         if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
    5336             :                 goto out;
    5337             : 
    5338           0 :         ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
    5339           0 :         if (!pte_present(*ptep))
    5340             :                 goto unlock;
    5341           0 :         *ptepp = ptep;
    5342           0 :         return 0;
    5343             : unlock:
    5344           0 :         pte_unmap_unlock(ptep, *ptlp);
    5345             : out:
    5346             :         return -EINVAL;
    5347             : }
    5348             : EXPORT_SYMBOL_GPL(follow_pte);
    5349             : 
    5350             : /**
    5351             :  * follow_pfn - look up PFN at a user virtual address
    5352             :  * @vma: memory mapping
    5353             :  * @address: user virtual address
    5354             :  * @pfn: location to store found PFN
    5355             :  *
    5356             :  * Only IO mappings and raw PFN mappings are allowed.
    5357             :  *
    5358             :  * This function does not allow the caller to read the permissions
    5359             :  * of the PTE.  Do not use it.
    5360             :  *
    5361             :  * Return: zero and the pfn at @pfn on success, -ve otherwise.
    5362             :  */
    5363           0 : int follow_pfn(struct vm_area_struct *vma, unsigned long address,
    5364             :         unsigned long *pfn)
    5365             : {
    5366           0 :         int ret = -EINVAL;
    5367             :         spinlock_t *ptl;
    5368             :         pte_t *ptep;
    5369             : 
    5370           0 :         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
    5371             :                 return ret;
    5372             : 
    5373           0 :         ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
    5374           0 :         if (ret)
    5375             :                 return ret;
    5376           0 :         *pfn = pte_pfn(*ptep);
    5377           0 :         pte_unmap_unlock(ptep, ptl);
    5378           0 :         return 0;
    5379             : }
    5380             : EXPORT_SYMBOL(follow_pfn);
    5381             : 
    5382             : #ifdef CONFIG_HAVE_IOREMAP_PROT
    5383             : int follow_phys(struct vm_area_struct *vma,
    5384             :                 unsigned long address, unsigned int flags,
    5385             :                 unsigned long *prot, resource_size_t *phys)
    5386             : {
    5387             :         int ret = -EINVAL;
    5388             :         pte_t *ptep, pte;
    5389             :         spinlock_t *ptl;
    5390             : 
    5391             :         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
    5392             :                 goto out;
    5393             : 
    5394             :         if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
    5395             :                 goto out;
    5396             :         pte = *ptep;
    5397             : 
    5398             :         if ((flags & FOLL_WRITE) && !pte_write(pte))
    5399             :                 goto unlock;
    5400             : 
    5401             :         *prot = pgprot_val(pte_pgprot(pte));
    5402             :         *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
    5403             : 
    5404             :         ret = 0;
    5405             : unlock:
    5406             :         pte_unmap_unlock(ptep, ptl);
    5407             : out:
    5408             :         return ret;
    5409             : }
    5410             : 
    5411             : /**
    5412             :  * generic_access_phys - generic implementation for iomem mmap access
    5413             :  * @vma: the vma to access
    5414             :  * @addr: userspace address, not relative offset within @vma
    5415             :  * @buf: buffer to read/write
    5416             :  * @len: length of transfer
    5417             :  * @write: set to FOLL_WRITE when writing, otherwise reading
    5418             :  *
    5419             :  * This is a generic implementation for &vm_operations_struct.access for an
    5420             :  * iomem mapping. This callback is used by access_process_vm() when the @vma is
    5421             :  * not page based.
    5422             :  */
    5423             : int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
    5424             :                         void *buf, int len, int write)
    5425             : {
    5426             :         resource_size_t phys_addr;
    5427             :         unsigned long prot = 0;
    5428             :         void __iomem *maddr;
    5429             :         pte_t *ptep, pte;
    5430             :         spinlock_t *ptl;
    5431             :         int offset = offset_in_page(addr);
    5432             :         int ret = -EINVAL;
    5433             : 
    5434             :         if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
    5435             :                 return -EINVAL;
    5436             : 
    5437             : retry:
    5438             :         if (follow_pte(vma->vm_mm, addr, &ptep, &ptl))
    5439             :                 return -EINVAL;
    5440             :         pte = *ptep;
    5441             :         pte_unmap_unlock(ptep, ptl);
    5442             : 
    5443             :         prot = pgprot_val(pte_pgprot(pte));
    5444             :         phys_addr = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
    5445             : 
    5446             :         if ((write & FOLL_WRITE) && !pte_write(pte))
    5447             :                 return -EINVAL;
    5448             : 
    5449             :         maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
    5450             :         if (!maddr)
    5451             :                 return -ENOMEM;
    5452             : 
    5453             :         if (follow_pte(vma->vm_mm, addr, &ptep, &ptl))
    5454             :                 goto out_unmap;
    5455             : 
    5456             :         if (!pte_same(pte, *ptep)) {
    5457             :                 pte_unmap_unlock(ptep, ptl);
    5458             :                 iounmap(maddr);
    5459             : 
    5460             :                 goto retry;
    5461             :         }
    5462             : 
    5463             :         if (write)
    5464             :                 memcpy_toio(maddr + offset, buf, len);
    5465             :         else
    5466             :                 memcpy_fromio(buf, maddr + offset, len);
    5467             :         ret = len;
    5468             :         pte_unmap_unlock(ptep, ptl);
    5469             : out_unmap:
    5470             :         iounmap(maddr);
    5471             : 
    5472             :         return ret;
    5473             : }
    5474             : EXPORT_SYMBOL_GPL(generic_access_phys);
    5475             : #endif
    5476             : 
    5477             : /*
    5478             :  * Access another process' address space as given in mm.
    5479             :  */
    5480           0 : int __access_remote_vm(struct mm_struct *mm, unsigned long addr, void *buf,
    5481             :                        int len, unsigned int gup_flags)
    5482             : {
    5483             :         struct vm_area_struct *vma;
    5484           0 :         void *old_buf = buf;
    5485           0 :         int write = gup_flags & FOLL_WRITE;
    5486             : 
    5487           0 :         if (mmap_read_lock_killable(mm))
    5488             :                 return 0;
    5489             : 
    5490             :         /* ignore errors, just check how much was successfully transferred */
    5491           0 :         while (len) {
    5492             :                 int bytes, ret, offset;
    5493             :                 void *maddr;
    5494           0 :                 struct page *page = NULL;
    5495             : 
    5496           0 :                 ret = get_user_pages_remote(mm, addr, 1,
    5497             :                                 gup_flags, &page, &vma, NULL);
    5498           0 :                 if (ret <= 0) {
    5499             : #ifndef CONFIG_HAVE_IOREMAP_PROT
    5500             :                         break;
    5501             : #else
    5502             :                         /*
    5503             :                          * Check if this is a VM_IO | VM_PFNMAP VMA, which
    5504             :                          * we can access using slightly different code.
    5505             :                          */
    5506             :                         vma = vma_lookup(mm, addr);
    5507             :                         if (!vma)
    5508             :                                 break;
    5509             :                         if (vma->vm_ops && vma->vm_ops->access)
    5510             :                                 ret = vma->vm_ops->access(vma, addr, buf,
    5511             :                                                           len, write);
    5512             :                         if (ret <= 0)
    5513             :                                 break;
    5514             :                         bytes = ret;
    5515             : #endif
    5516             :                 } else {
    5517           0 :                         bytes = len;
    5518           0 :                         offset = addr & (PAGE_SIZE-1);
    5519           0 :                         if (bytes > PAGE_SIZE-offset)
    5520           0 :                                 bytes = PAGE_SIZE-offset;
    5521             : 
    5522           0 :                         maddr = kmap(page);
    5523           0 :                         if (write) {
    5524           0 :                                 copy_to_user_page(vma, page, addr,
    5525             :                                                   maddr + offset, buf, bytes);
    5526           0 :                                 set_page_dirty_lock(page);
    5527             :                         } else {
    5528           0 :                                 copy_from_user_page(vma, page, addr,
    5529             :                                                     buf, maddr + offset, bytes);
    5530             :                         }
    5531           0 :                         kunmap(page);
    5532           0 :                         put_page(page);
    5533             :                 }
    5534           0 :                 len -= bytes;
    5535           0 :                 buf += bytes;
    5536           0 :                 addr += bytes;
    5537             :         }
    5538           0 :         mmap_read_unlock(mm);
    5539             : 
    5540           0 :         return buf - old_buf;
    5541             : }
    5542             : 
    5543             : /**
    5544             :  * access_remote_vm - access another process' address space
    5545             :  * @mm:         the mm_struct of the target address space
    5546             :  * @addr:       start address to access
    5547             :  * @buf:        source or destination buffer
    5548             :  * @len:        number of bytes to transfer
    5549             :  * @gup_flags:  flags modifying lookup behaviour
    5550             :  *
    5551             :  * The caller must hold a reference on @mm.
    5552             :  *
    5553             :  * Return: number of bytes copied from source to destination.
    5554             :  */
    5555           0 : int access_remote_vm(struct mm_struct *mm, unsigned long addr,
    5556             :                 void *buf, int len, unsigned int gup_flags)
    5557             : {
    5558           0 :         return __access_remote_vm(mm, addr, buf, len, gup_flags);
    5559             : }
    5560             : 
    5561             : /*
    5562             :  * Access another process' address space.
    5563             :  * Source/target buffer must be kernel space,
    5564             :  * Do not walk the page table directly, use get_user_pages
    5565             :  */
    5566           0 : int access_process_vm(struct task_struct *tsk, unsigned long addr,
    5567             :                 void *buf, int len, unsigned int gup_flags)
    5568             : {
    5569             :         struct mm_struct *mm;
    5570             :         int ret;
    5571             : 
    5572           0 :         mm = get_task_mm(tsk);
    5573           0 :         if (!mm)
    5574             :                 return 0;
    5575             : 
    5576           0 :         ret = __access_remote_vm(mm, addr, buf, len, gup_flags);
    5577             : 
    5578           0 :         mmput(mm);
    5579             : 
    5580           0 :         return ret;
    5581             : }
    5582             : EXPORT_SYMBOL_GPL(access_process_vm);
    5583             : 
    5584             : /*
    5585             :  * Print the name of a VMA.
    5586             :  */
    5587           0 : void print_vma_addr(char *prefix, unsigned long ip)
    5588             : {
    5589           0 :         struct mm_struct *mm = current->mm;
    5590             :         struct vm_area_struct *vma;
    5591             : 
    5592             :         /*
    5593             :          * we might be running from an atomic context so we cannot sleep
    5594             :          */
    5595           0 :         if (!mmap_read_trylock(mm))
    5596             :                 return;
    5597             : 
    5598           0 :         vma = find_vma(mm, ip);
    5599           0 :         if (vma && vma->vm_file) {
    5600           0 :                 struct file *f = vma->vm_file;
    5601           0 :                 char *buf = (char *)__get_free_page(GFP_NOWAIT);
    5602           0 :                 if (buf) {
    5603             :                         char *p;
    5604             : 
    5605           0 :                         p = file_path(f, buf, PAGE_SIZE);
    5606           0 :                         if (IS_ERR(p))
    5607           0 :                                 p = "?";
    5608           0 :                         printk("%s%s[%lx+%lx]", prefix, kbasename(p),
    5609             :                                         vma->vm_start,
    5610             :                                         vma->vm_end - vma->vm_start);
    5611           0 :                         free_page((unsigned long)buf);
    5612             :                 }
    5613             :         }
    5614             :         mmap_read_unlock(mm);
    5615             : }
    5616             : 
    5617             : #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
    5618             : void __might_fault(const char *file, int line)
    5619             : {
    5620             :         if (pagefault_disabled())
    5621             :                 return;
    5622             :         __might_sleep(file, line);
    5623             : #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
    5624             :         if (current->mm)
    5625             :                 might_lock_read(&current->mm->mmap_lock);
    5626             : #endif
    5627             : }
    5628             : EXPORT_SYMBOL(__might_fault);
    5629             : #endif
    5630             : 
    5631             : #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
    5632             : /*
    5633             :  * Process all subpages of the specified huge page with the specified
    5634             :  * operation.  The target subpage will be processed last to keep its
    5635             :  * cache lines hot.
    5636             :  */
    5637             : static inline void process_huge_page(
    5638             :         unsigned long addr_hint, unsigned int pages_per_huge_page,
    5639             :         void (*process_subpage)(unsigned long addr, int idx, void *arg),
    5640             :         void *arg)
    5641             : {
    5642             :         int i, n, base, l;
    5643             :         unsigned long addr = addr_hint &
    5644             :                 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
    5645             : 
    5646             :         /* Process target subpage last to keep its cache lines hot */
    5647             :         might_sleep();
    5648             :         n = (addr_hint - addr) / PAGE_SIZE;
    5649             :         if (2 * n <= pages_per_huge_page) {
    5650             :                 /* If target subpage in first half of huge page */
    5651             :                 base = 0;
    5652             :                 l = n;
    5653             :                 /* Process subpages at the end of huge page */
    5654             :                 for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
    5655             :                         cond_resched();
    5656             :                         process_subpage(addr + i * PAGE_SIZE, i, arg);
    5657             :                 }
    5658             :         } else {
    5659             :                 /* If target subpage in second half of huge page */
    5660             :                 base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
    5661             :                 l = pages_per_huge_page - n;
    5662             :                 /* Process subpages at the begin of huge page */
    5663             :                 for (i = 0; i < base; i++) {
    5664             :                         cond_resched();
    5665             :                         process_subpage(addr + i * PAGE_SIZE, i, arg);
    5666             :                 }
    5667             :         }
    5668             :         /*
    5669             :          * Process remaining subpages in left-right-left-right pattern
    5670             :          * towards the target subpage
    5671             :          */
    5672             :         for (i = 0; i < l; i++) {
    5673             :                 int left_idx = base + i;
    5674             :                 int right_idx = base + 2 * l - 1 - i;
    5675             : 
    5676             :                 cond_resched();
    5677             :                 process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
    5678             :                 cond_resched();
    5679             :                 process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
    5680             :         }
    5681             : }
    5682             : 
    5683             : static void clear_gigantic_page(struct page *page,
    5684             :                                 unsigned long addr,
    5685             :                                 unsigned int pages_per_huge_page)
    5686             : {
    5687             :         int i;
    5688             :         struct page *p;
    5689             : 
    5690             :         might_sleep();
    5691             :         for (i = 0; i < pages_per_huge_page; i++) {
    5692             :                 p = nth_page(page, i);
    5693             :                 cond_resched();
    5694             :                 clear_user_highpage(p, addr + i * PAGE_SIZE);
    5695             :         }
    5696             : }
    5697             : 
    5698             : static void clear_subpage(unsigned long addr, int idx, void *arg)
    5699             : {
    5700             :         struct page *page = arg;
    5701             : 
    5702             :         clear_user_highpage(page + idx, addr);
    5703             : }
    5704             : 
    5705             : void clear_huge_page(struct page *page,
    5706             :                      unsigned long addr_hint, unsigned int pages_per_huge_page)
    5707             : {
    5708             :         unsigned long addr = addr_hint &
    5709             :                 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
    5710             : 
    5711             :         if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
    5712             :                 clear_gigantic_page(page, addr, pages_per_huge_page);
    5713             :                 return;
    5714             :         }
    5715             : 
    5716             :         process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page);
    5717             : }
    5718             : 
    5719             : static void copy_user_gigantic_page(struct page *dst, struct page *src,
    5720             :                                     unsigned long addr,
    5721             :                                     struct vm_area_struct *vma,
    5722             :                                     unsigned int pages_per_huge_page)
    5723             : {
    5724             :         int i;
    5725             :         struct page *dst_base = dst;
    5726             :         struct page *src_base = src;
    5727             : 
    5728             :         for (i = 0; i < pages_per_huge_page; i++) {
    5729             :                 dst = nth_page(dst_base, i);
    5730             :                 src = nth_page(src_base, i);
    5731             : 
    5732             :                 cond_resched();
    5733             :                 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
    5734             :         }
    5735             : }
    5736             : 
    5737             : struct copy_subpage_arg {
    5738             :         struct page *dst;
    5739             :         struct page *src;
    5740             :         struct vm_area_struct *vma;
    5741             : };
    5742             : 
    5743             : static void copy_subpage(unsigned long addr, int idx, void *arg)
    5744             : {
    5745             :         struct copy_subpage_arg *copy_arg = arg;
    5746             : 
    5747             :         copy_user_highpage(copy_arg->dst + idx, copy_arg->src + idx,
    5748             :                            addr, copy_arg->vma);
    5749             : }
    5750             : 
    5751             : void copy_user_huge_page(struct page *dst, struct page *src,
    5752             :                          unsigned long addr_hint, struct vm_area_struct *vma,
    5753             :                          unsigned int pages_per_huge_page)
    5754             : {
    5755             :         unsigned long addr = addr_hint &
    5756             :                 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
    5757             :         struct copy_subpage_arg arg = {
    5758             :                 .dst = dst,
    5759             :                 .src = src,
    5760             :                 .vma = vma,
    5761             :         };
    5762             : 
    5763             :         if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
    5764             :                 copy_user_gigantic_page(dst, src, addr, vma,
    5765             :                                         pages_per_huge_page);
    5766             :                 return;
    5767             :         }
    5768             : 
    5769             :         process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg);
    5770             : }
    5771             : 
    5772             : long copy_huge_page_from_user(struct page *dst_page,
    5773             :                                 const void __user *usr_src,
    5774             :                                 unsigned int pages_per_huge_page,
    5775             :                                 bool allow_pagefault)
    5776             : {
    5777             :         void *page_kaddr;
    5778             :         unsigned long i, rc = 0;
    5779             :         unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
    5780             :         struct page *subpage;
    5781             : 
    5782             :         for (i = 0; i < pages_per_huge_page; i++) {
    5783             :                 subpage = nth_page(dst_page, i);
    5784             :                 if (allow_pagefault)
    5785             :                         page_kaddr = kmap(subpage);
    5786             :                 else
    5787             :                         page_kaddr = kmap_atomic(subpage);
    5788             :                 rc = copy_from_user(page_kaddr,
    5789             :                                 usr_src + i * PAGE_SIZE, PAGE_SIZE);
    5790             :                 if (allow_pagefault)
    5791             :                         kunmap(subpage);
    5792             :                 else
    5793             :                         kunmap_atomic(page_kaddr);
    5794             : 
    5795             :                 ret_val -= (PAGE_SIZE - rc);
    5796             :                 if (rc)
    5797             :                         break;
    5798             : 
    5799             :                 flush_dcache_page(subpage);
    5800             : 
    5801             :                 cond_resched();
    5802             :         }
    5803             :         return ret_val;
    5804             : }
    5805             : #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
    5806             : 
    5807             : #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
    5808             : 
    5809             : static struct kmem_cache *page_ptl_cachep;
    5810             : 
    5811             : void __init ptlock_cache_init(void)
    5812             : {
    5813             :         page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
    5814             :                         SLAB_PANIC, NULL);
    5815             : }
    5816             : 
    5817             : bool ptlock_alloc(struct page *page)
    5818             : {
    5819             :         spinlock_t *ptl;
    5820             : 
    5821             :         ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
    5822             :         if (!ptl)
    5823             :                 return false;
    5824             :         page->ptl = ptl;
    5825             :         return true;
    5826             : }
    5827             : 
    5828             : void ptlock_free(struct page *page)
    5829             : {
    5830             :         kmem_cache_free(page_ptl_cachep, page->ptl);
    5831             : }
    5832             : #endif

Generated by: LCOV version 1.14