Line data Source code
1 : /* SPDX-License-Identifier: GPL-2.0 */
2 : #ifndef MM_SLAB_H
3 : #define MM_SLAB_H
4 : /*
5 : * Internal slab definitions
6 : */
7 :
8 : /* Reuses the bits in struct page */
9 : struct slab {
10 : unsigned long __page_flags;
11 :
12 : #if defined(CONFIG_SLAB)
13 :
14 : struct kmem_cache *slab_cache;
15 : union {
16 : struct {
17 : struct list_head slab_list;
18 : void *freelist; /* array of free object indexes */
19 : void *s_mem; /* first object */
20 : };
21 : struct rcu_head rcu_head;
22 : };
23 : unsigned int active;
24 :
25 : #elif defined(CONFIG_SLUB)
26 :
27 : struct kmem_cache *slab_cache;
28 : union {
29 : struct {
30 : union {
31 : struct list_head slab_list;
32 : #ifdef CONFIG_SLUB_CPU_PARTIAL
33 : struct {
34 : struct slab *next;
35 : int slabs; /* Nr of slabs left */
36 : };
37 : #endif
38 : };
39 : /* Double-word boundary */
40 : void *freelist; /* first free object */
41 : union {
42 : unsigned long counters;
43 : struct {
44 : unsigned inuse:16;
45 : unsigned objects:15;
46 : unsigned frozen:1;
47 : };
48 : };
49 : };
50 : struct rcu_head rcu_head;
51 : };
52 : unsigned int __unused;
53 :
54 : #elif defined(CONFIG_SLOB)
55 :
56 : struct list_head slab_list;
57 : void *__unused_1;
58 : void *freelist; /* first free block */
59 : long units;
60 : unsigned int __unused_2;
61 :
62 : #else
63 : #error "Unexpected slab allocator configured"
64 : #endif
65 :
66 : atomic_t __page_refcount;
67 : #ifdef CONFIG_MEMCG
68 : unsigned long memcg_data;
69 : #endif
70 : };
71 :
72 : #define SLAB_MATCH(pg, sl) \
73 : static_assert(offsetof(struct page, pg) == offsetof(struct slab, sl))
74 : SLAB_MATCH(flags, __page_flags);
75 : #ifndef CONFIG_SLOB
76 : SLAB_MATCH(compound_head, slab_cache); /* Ensure bit 0 is clear */
77 : #else
78 : SLAB_MATCH(compound_head, slab_list); /* Ensure bit 0 is clear */
79 : #endif
80 : SLAB_MATCH(_refcount, __page_refcount);
81 : #ifdef CONFIG_MEMCG
82 : SLAB_MATCH(memcg_data, memcg_data);
83 : #endif
84 : #undef SLAB_MATCH
85 : static_assert(sizeof(struct slab) <= sizeof(struct page));
86 : #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && defined(CONFIG_SLUB)
87 : static_assert(IS_ALIGNED(offsetof(struct slab, freelist), 2*sizeof(void *)));
88 : #endif
89 :
90 : /**
91 : * folio_slab - Converts from folio to slab.
92 : * @folio: The folio.
93 : *
94 : * Currently struct slab is a different representation of a folio where
95 : * folio_test_slab() is true.
96 : *
97 : * Return: The slab which contains this folio.
98 : */
99 : #define folio_slab(folio) (_Generic((folio), \
100 : const struct folio *: (const struct slab *)(folio), \
101 : struct folio *: (struct slab *)(folio)))
102 :
103 : /**
104 : * slab_folio - The folio allocated for a slab
105 : * @slab: The slab.
106 : *
107 : * Slabs are allocated as folios that contain the individual objects and are
108 : * using some fields in the first struct page of the folio - those fields are
109 : * now accessed by struct slab. It is occasionally necessary to convert back to
110 : * a folio in order to communicate with the rest of the mm. Please use this
111 : * helper function instead of casting yourself, as the implementation may change
112 : * in the future.
113 : */
114 : #define slab_folio(s) (_Generic((s), \
115 : const struct slab *: (const struct folio *)s, \
116 : struct slab *: (struct folio *)s))
117 :
118 : /**
119 : * page_slab - Converts from first struct page to slab.
120 : * @p: The first (either head of compound or single) page of slab.
121 : *
122 : * A temporary wrapper to convert struct page to struct slab in situations where
123 : * we know the page is the compound head, or single order-0 page.
124 : *
125 : * Long-term ideally everything would work with struct slab directly or go
126 : * through folio to struct slab.
127 : *
128 : * Return: The slab which contains this page
129 : */
130 : #define page_slab(p) (_Generic((p), \
131 : const struct page *: (const struct slab *)(p), \
132 : struct page *: (struct slab *)(p)))
133 :
134 : /**
135 : * slab_page - The first struct page allocated for a slab
136 : * @slab: The slab.
137 : *
138 : * A convenience wrapper for converting slab to the first struct page of the
139 : * underlying folio, to communicate with code not yet converted to folio or
140 : * struct slab.
141 : */
142 : #define slab_page(s) folio_page(slab_folio(s), 0)
143 :
144 : /*
145 : * If network-based swap is enabled, sl*b must keep track of whether pages
146 : * were allocated from pfmemalloc reserves.
147 : */
148 : static inline bool slab_test_pfmemalloc(const struct slab *slab)
149 : {
150 17501 : return folio_test_active((struct folio *)slab_folio(slab));
151 : }
152 :
153 : static inline void slab_set_pfmemalloc(struct slab *slab)
154 : {
155 0 : folio_set_active(slab_folio(slab));
156 : }
157 :
158 : static inline void slab_clear_pfmemalloc(struct slab *slab)
159 : {
160 : folio_clear_active(slab_folio(slab));
161 : }
162 :
163 : static inline void __slab_clear_pfmemalloc(struct slab *slab)
164 : {
165 8160 : __folio_clear_active(slab_folio(slab));
166 : }
167 :
168 : static inline void *slab_address(const struct slab *slab)
169 : {
170 8600 : return folio_address(slab_folio(slab));
171 : }
172 :
173 : static inline int slab_nid(const struct slab *slab)
174 : {
175 33257 : return folio_nid(slab_folio(slab));
176 : }
177 :
178 : static inline pg_data_t *slab_pgdat(const struct slab *slab)
179 : {
180 16760 : return folio_pgdat(slab_folio(slab));
181 : }
182 :
183 : static inline struct slab *virt_to_slab(const void *addr)
184 : {
185 408338 : struct folio *folio = virt_to_folio(addr);
186 :
187 408338 : if (!folio_test_slab(folio))
188 : return NULL;
189 :
190 : return folio_slab(folio);
191 : }
192 :
193 : static inline int slab_order(const struct slab *slab)
194 : {
195 0 : return folio_order((struct folio *)slab_folio(slab));
196 : }
197 :
198 : static inline size_t slab_size(const struct slab *slab)
199 : {
200 0 : return PAGE_SIZE << slab_order(slab);
201 : }
202 :
203 : #ifdef CONFIG_SLOB
204 : /*
205 : * Common fields provided in kmem_cache by all slab allocators
206 : * This struct is either used directly by the allocator (SLOB)
207 : * or the allocator must include definitions for all fields
208 : * provided in kmem_cache_common in their definition of kmem_cache.
209 : *
210 : * Once we can do anonymous structs (C11 standard) we could put a
211 : * anonymous struct definition in these allocators so that the
212 : * separate allocations in the kmem_cache structure of SLAB and
213 : * SLUB is no longer needed.
214 : */
215 : struct kmem_cache {
216 : unsigned int object_size;/* The original size of the object */
217 : unsigned int size; /* The aligned/padded/added on size */
218 : unsigned int align; /* Alignment as calculated */
219 : slab_flags_t flags; /* Active flags on the slab */
220 : const char *name; /* Slab name for sysfs */
221 : int refcount; /* Use counter */
222 : void (*ctor)(void *); /* Called on object slot creation */
223 : struct list_head list; /* List of all slab caches on the system */
224 : };
225 :
226 : #endif /* CONFIG_SLOB */
227 :
228 : #ifdef CONFIG_SLAB
229 : #include <linux/slab_def.h>
230 : #endif
231 :
232 : #ifdef CONFIG_SLUB
233 : #include <linux/slub_def.h>
234 : #endif
235 :
236 : #include <linux/memcontrol.h>
237 : #include <linux/fault-inject.h>
238 : #include <linux/kasan.h>
239 : #include <linux/kmemleak.h>
240 : #include <linux/random.h>
241 : #include <linux/sched/mm.h>
242 : #include <linux/list_lru.h>
243 :
244 : /*
245 : * State of the slab allocator.
246 : *
247 : * This is used to describe the states of the allocator during bootup.
248 : * Allocators use this to gradually bootstrap themselves. Most allocators
249 : * have the problem that the structures used for managing slab caches are
250 : * allocated from slab caches themselves.
251 : */
252 : enum slab_state {
253 : DOWN, /* No slab functionality yet */
254 : PARTIAL, /* SLUB: kmem_cache_node available */
255 : PARTIAL_NODE, /* SLAB: kmalloc size for node struct available */
256 : UP, /* Slab caches usable but not all extras yet */
257 : FULL /* Everything is working */
258 : };
259 :
260 : extern enum slab_state slab_state;
261 :
262 : /* The slab cache mutex protects the management structures during changes */
263 : extern struct mutex slab_mutex;
264 :
265 : /* The list of all slab caches on the system */
266 : extern struct list_head slab_caches;
267 :
268 : /* The slab cache that manages slab cache information */
269 : extern struct kmem_cache *kmem_cache;
270 :
271 : /* A table of kmalloc cache names and sizes */
272 : extern const struct kmalloc_info_struct {
273 : const char *name[NR_KMALLOC_TYPES];
274 : unsigned int size;
275 : } kmalloc_info[];
276 :
277 : #ifndef CONFIG_SLOB
278 : /* Kmalloc array related functions */
279 : void setup_kmalloc_cache_index_table(void);
280 : void create_kmalloc_caches(slab_flags_t);
281 :
282 : /* Find the kmalloc slab corresponding for a certain size */
283 : struct kmem_cache *kmalloc_slab(size_t, gfp_t);
284 :
285 : void *__kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags,
286 : int node, size_t orig_size,
287 : unsigned long caller);
288 : void __kmem_cache_free(struct kmem_cache *s, void *x, unsigned long caller);
289 : #endif
290 :
291 : gfp_t kmalloc_fix_flags(gfp_t flags);
292 :
293 : /* Functions provided by the slab allocators */
294 : int __kmem_cache_create(struct kmem_cache *, slab_flags_t flags);
295 :
296 : struct kmem_cache *create_kmalloc_cache(const char *name, unsigned int size,
297 : slab_flags_t flags, unsigned int useroffset,
298 : unsigned int usersize);
299 : extern void create_boot_cache(struct kmem_cache *, const char *name,
300 : unsigned int size, slab_flags_t flags,
301 : unsigned int useroffset, unsigned int usersize);
302 :
303 : int slab_unmergeable(struct kmem_cache *s);
304 : struct kmem_cache *find_mergeable(unsigned size, unsigned align,
305 : slab_flags_t flags, const char *name, void (*ctor)(void *));
306 : #ifndef CONFIG_SLOB
307 : struct kmem_cache *
308 : __kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
309 : slab_flags_t flags, void (*ctor)(void *));
310 :
311 : slab_flags_t kmem_cache_flags(unsigned int object_size,
312 : slab_flags_t flags, const char *name);
313 : #else
314 : static inline struct kmem_cache *
315 : __kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
316 : slab_flags_t flags, void (*ctor)(void *))
317 : { return NULL; }
318 :
319 : static inline slab_flags_t kmem_cache_flags(unsigned int object_size,
320 : slab_flags_t flags, const char *name)
321 : {
322 : return flags;
323 : }
324 : #endif
325 :
326 : static inline bool is_kmalloc_cache(struct kmem_cache *s)
327 : {
328 : #ifndef CONFIG_SLOB
329 : return (s->flags & SLAB_KMALLOC);
330 : #else
331 : return false;
332 : #endif
333 : }
334 :
335 : /* Legal flag mask for kmem_cache_create(), for various configurations */
336 : #define SLAB_CORE_FLAGS (SLAB_HWCACHE_ALIGN | SLAB_CACHE_DMA | \
337 : SLAB_CACHE_DMA32 | SLAB_PANIC | \
338 : SLAB_TYPESAFE_BY_RCU | SLAB_DEBUG_OBJECTS )
339 :
340 : #if defined(CONFIG_DEBUG_SLAB)
341 : #define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
342 : #elif defined(CONFIG_SLUB_DEBUG)
343 : #define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
344 : SLAB_TRACE | SLAB_CONSISTENCY_CHECKS)
345 : #else
346 : #define SLAB_DEBUG_FLAGS (0)
347 : #endif
348 :
349 : #if defined(CONFIG_SLAB)
350 : #define SLAB_CACHE_FLAGS (SLAB_MEM_SPREAD | SLAB_NOLEAKTRACE | \
351 : SLAB_RECLAIM_ACCOUNT | SLAB_TEMPORARY | \
352 : SLAB_ACCOUNT)
353 : #elif defined(CONFIG_SLUB)
354 : #define SLAB_CACHE_FLAGS (SLAB_NOLEAKTRACE | SLAB_RECLAIM_ACCOUNT | \
355 : SLAB_TEMPORARY | SLAB_ACCOUNT | \
356 : SLAB_NO_USER_FLAGS | SLAB_KMALLOC)
357 : #else
358 : #define SLAB_CACHE_FLAGS (SLAB_NOLEAKTRACE)
359 : #endif
360 :
361 : /* Common flags available with current configuration */
362 : #define CACHE_CREATE_MASK (SLAB_CORE_FLAGS | SLAB_DEBUG_FLAGS | SLAB_CACHE_FLAGS)
363 :
364 : /* Common flags permitted for kmem_cache_create */
365 : #define SLAB_FLAGS_PERMITTED (SLAB_CORE_FLAGS | \
366 : SLAB_RED_ZONE | \
367 : SLAB_POISON | \
368 : SLAB_STORE_USER | \
369 : SLAB_TRACE | \
370 : SLAB_CONSISTENCY_CHECKS | \
371 : SLAB_MEM_SPREAD | \
372 : SLAB_NOLEAKTRACE | \
373 : SLAB_RECLAIM_ACCOUNT | \
374 : SLAB_TEMPORARY | \
375 : SLAB_ACCOUNT | \
376 : SLAB_KMALLOC | \
377 : SLAB_NO_USER_FLAGS)
378 :
379 : bool __kmem_cache_empty(struct kmem_cache *);
380 : int __kmem_cache_shutdown(struct kmem_cache *);
381 : void __kmem_cache_release(struct kmem_cache *);
382 : int __kmem_cache_shrink(struct kmem_cache *);
383 : void slab_kmem_cache_release(struct kmem_cache *);
384 :
385 : struct seq_file;
386 : struct file;
387 :
388 : struct slabinfo {
389 : unsigned long active_objs;
390 : unsigned long num_objs;
391 : unsigned long active_slabs;
392 : unsigned long num_slabs;
393 : unsigned long shared_avail;
394 : unsigned int limit;
395 : unsigned int batchcount;
396 : unsigned int shared;
397 : unsigned int objects_per_slab;
398 : unsigned int cache_order;
399 : };
400 :
401 : void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo);
402 : void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s);
403 : ssize_t slabinfo_write(struct file *file, const char __user *buffer,
404 : size_t count, loff_t *ppos);
405 :
406 : static inline enum node_stat_item cache_vmstat_idx(struct kmem_cache *s)
407 : {
408 16760 : return (s->flags & SLAB_RECLAIM_ACCOUNT) ?
409 16760 : NR_SLAB_RECLAIMABLE_B : NR_SLAB_UNRECLAIMABLE_B;
410 : }
411 :
412 : #ifdef CONFIG_SLUB_DEBUG
413 : #ifdef CONFIG_SLUB_DEBUG_ON
414 : DECLARE_STATIC_KEY_TRUE(slub_debug_enabled);
415 : #else
416 : DECLARE_STATIC_KEY_FALSE(slub_debug_enabled);
417 : #endif
418 : extern void print_tracking(struct kmem_cache *s, void *object);
419 : long validate_slab_cache(struct kmem_cache *s);
420 : static inline bool __slub_debug_enabled(void)
421 : {
422 1639128 : return static_branch_unlikely(&slub_debug_enabled);
423 : }
424 : #else
425 : static inline void print_tracking(struct kmem_cache *s, void *object)
426 : {
427 : }
428 : static inline bool __slub_debug_enabled(void)
429 : {
430 : return false;
431 : }
432 : #endif
433 :
434 : /*
435 : * Returns true if any of the specified slub_debug flags is enabled for the
436 : * cache. Use only for flags parsed by setup_slub_debug() as it also enables
437 : * the static key.
438 : */
439 : static inline bool kmem_cache_debug_flags(struct kmem_cache *s, slab_flags_t flags)
440 : {
441 : if (IS_ENABLED(CONFIG_SLUB_DEBUG))
442 : VM_WARN_ON_ONCE(!(flags & SLAB_DEBUG_FLAGS));
443 1639127 : if (__slub_debug_enabled())
444 0 : return s->flags & flags;
445 : return false;
446 : }
447 :
448 : #ifdef CONFIG_MEMCG_KMEM
449 : /*
450 : * slab_objcgs - get the object cgroups vector associated with a slab
451 : * @slab: a pointer to the slab struct
452 : *
453 : * Returns a pointer to the object cgroups vector associated with the slab,
454 : * or NULL if no such vector has been associated yet.
455 : */
456 : static inline struct obj_cgroup **slab_objcgs(struct slab *slab)
457 : {
458 : unsigned long memcg_data = READ_ONCE(slab->memcg_data);
459 :
460 : VM_BUG_ON_PAGE(memcg_data && !(memcg_data & MEMCG_DATA_OBJCGS),
461 : slab_page(slab));
462 : VM_BUG_ON_PAGE(memcg_data & MEMCG_DATA_KMEM, slab_page(slab));
463 :
464 : return (struct obj_cgroup **)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
465 : }
466 :
467 : int memcg_alloc_slab_cgroups(struct slab *slab, struct kmem_cache *s,
468 : gfp_t gfp, bool new_slab);
469 : void mod_objcg_state(struct obj_cgroup *objcg, struct pglist_data *pgdat,
470 : enum node_stat_item idx, int nr);
471 :
472 : static inline void memcg_free_slab_cgroups(struct slab *slab)
473 : {
474 : kfree(slab_objcgs(slab));
475 : slab->memcg_data = 0;
476 : }
477 :
478 : static inline size_t obj_full_size(struct kmem_cache *s)
479 : {
480 : /*
481 : * For each accounted object there is an extra space which is used
482 : * to store obj_cgroup membership. Charge it too.
483 : */
484 : return s->size + sizeof(struct obj_cgroup *);
485 : }
486 :
487 : /*
488 : * Returns false if the allocation should fail.
489 : */
490 : static inline bool memcg_slab_pre_alloc_hook(struct kmem_cache *s,
491 : struct list_lru *lru,
492 : struct obj_cgroup **objcgp,
493 : size_t objects, gfp_t flags)
494 : {
495 : struct obj_cgroup *objcg;
496 :
497 : if (!memcg_kmem_online())
498 : return true;
499 :
500 : if (!(flags & __GFP_ACCOUNT) && !(s->flags & SLAB_ACCOUNT))
501 : return true;
502 :
503 : objcg = get_obj_cgroup_from_current();
504 : if (!objcg)
505 : return true;
506 :
507 : if (lru) {
508 : int ret;
509 : struct mem_cgroup *memcg;
510 :
511 : memcg = get_mem_cgroup_from_objcg(objcg);
512 : ret = memcg_list_lru_alloc(memcg, lru, flags);
513 : css_put(&memcg->css);
514 :
515 : if (ret)
516 : goto out;
517 : }
518 :
519 : if (obj_cgroup_charge(objcg, flags, objects * obj_full_size(s)))
520 : goto out;
521 :
522 : *objcgp = objcg;
523 : return true;
524 : out:
525 : obj_cgroup_put(objcg);
526 : return false;
527 : }
528 :
529 : static inline void memcg_slab_post_alloc_hook(struct kmem_cache *s,
530 : struct obj_cgroup *objcg,
531 : gfp_t flags, size_t size,
532 : void **p)
533 : {
534 : struct slab *slab;
535 : unsigned long off;
536 : size_t i;
537 :
538 : if (!memcg_kmem_online() || !objcg)
539 : return;
540 :
541 : for (i = 0; i < size; i++) {
542 : if (likely(p[i])) {
543 : slab = virt_to_slab(p[i]);
544 :
545 : if (!slab_objcgs(slab) &&
546 : memcg_alloc_slab_cgroups(slab, s, flags,
547 : false)) {
548 : obj_cgroup_uncharge(objcg, obj_full_size(s));
549 : continue;
550 : }
551 :
552 : off = obj_to_index(s, slab, p[i]);
553 : obj_cgroup_get(objcg);
554 : slab_objcgs(slab)[off] = objcg;
555 : mod_objcg_state(objcg, slab_pgdat(slab),
556 : cache_vmstat_idx(s), obj_full_size(s));
557 : } else {
558 : obj_cgroup_uncharge(objcg, obj_full_size(s));
559 : }
560 : }
561 : obj_cgroup_put(objcg);
562 : }
563 :
564 : static inline void memcg_slab_free_hook(struct kmem_cache *s, struct slab *slab,
565 : void **p, int objects)
566 : {
567 : struct obj_cgroup **objcgs;
568 : int i;
569 :
570 : if (!memcg_kmem_online())
571 : return;
572 :
573 : objcgs = slab_objcgs(slab);
574 : if (!objcgs)
575 : return;
576 :
577 : for (i = 0; i < objects; i++) {
578 : struct obj_cgroup *objcg;
579 : unsigned int off;
580 :
581 : off = obj_to_index(s, slab, p[i]);
582 : objcg = objcgs[off];
583 : if (!objcg)
584 : continue;
585 :
586 : objcgs[off] = NULL;
587 : obj_cgroup_uncharge(objcg, obj_full_size(s));
588 : mod_objcg_state(objcg, slab_pgdat(slab), cache_vmstat_idx(s),
589 : -obj_full_size(s));
590 : obj_cgroup_put(objcg);
591 : }
592 : }
593 :
594 : #else /* CONFIG_MEMCG_KMEM */
595 : static inline struct obj_cgroup **slab_objcgs(struct slab *slab)
596 : {
597 : return NULL;
598 : }
599 :
600 : static inline struct mem_cgroup *memcg_from_slab_obj(void *ptr)
601 : {
602 : return NULL;
603 : }
604 :
605 : static inline int memcg_alloc_slab_cgroups(struct slab *slab,
606 : struct kmem_cache *s, gfp_t gfp,
607 : bool new_slab)
608 : {
609 : return 0;
610 : }
611 :
612 : static inline void memcg_free_slab_cgroups(struct slab *slab)
613 : {
614 : }
615 :
616 : static inline bool memcg_slab_pre_alloc_hook(struct kmem_cache *s,
617 : struct list_lru *lru,
618 : struct obj_cgroup **objcgp,
619 : size_t objects, gfp_t flags)
620 : {
621 : return true;
622 : }
623 :
624 : static inline void memcg_slab_post_alloc_hook(struct kmem_cache *s,
625 : struct obj_cgroup *objcg,
626 : gfp_t flags, size_t size,
627 : void **p)
628 : {
629 : }
630 :
631 : static inline void memcg_slab_free_hook(struct kmem_cache *s, struct slab *slab,
632 : void **p, int objects)
633 : {
634 : }
635 : #endif /* CONFIG_MEMCG_KMEM */
636 :
637 : #ifndef CONFIG_SLOB
638 0 : static inline struct kmem_cache *virt_to_cache(const void *obj)
639 : {
640 : struct slab *slab;
641 :
642 0 : slab = virt_to_slab(obj);
643 0 : if (WARN_ONCE(!slab, "%s: Object is not a Slab page!\n",
644 : __func__))
645 : return NULL;
646 0 : return slab->slab_cache;
647 : }
648 :
649 : static __always_inline void account_slab(struct slab *slab, int order,
650 : struct kmem_cache *s, gfp_t gfp)
651 : {
652 : if (memcg_kmem_online() && (s->flags & SLAB_ACCOUNT))
653 : memcg_alloc_slab_cgroups(slab, s, gfp, true);
654 :
655 34400 : mod_node_page_state(slab_pgdat(slab), cache_vmstat_idx(s),
656 8600 : PAGE_SIZE << order);
657 : }
658 :
659 : static __always_inline void unaccount_slab(struct slab *slab, int order,
660 : struct kmem_cache *s)
661 : {
662 : if (memcg_kmem_online())
663 : memcg_free_slab_cgroups(slab);
664 :
665 32640 : mod_node_page_state(slab_pgdat(slab), cache_vmstat_idx(s),
666 8160 : -(PAGE_SIZE << order));
667 : }
668 :
669 365486 : static inline struct kmem_cache *cache_from_obj(struct kmem_cache *s, void *x)
670 : {
671 : struct kmem_cache *cachep;
672 :
673 365486 : if (!IS_ENABLED(CONFIG_SLAB_FREELIST_HARDENED) &&
674 730972 : !kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS))
675 : return s;
676 :
677 0 : cachep = virt_to_cache(x);
678 0 : if (WARN(cachep && cachep != s,
679 : "%s: Wrong slab cache. %s but object is from %s\n",
680 : __func__, s->name, cachep->name))
681 0 : print_tracking(cachep, x);
682 : return cachep;
683 : }
684 :
685 : void free_large_kmalloc(struct folio *folio, void *object);
686 :
687 : #endif /* CONFIG_SLOB */
688 :
689 : size_t __ksize(const void *objp);
690 :
691 : static inline size_t slab_ksize(const struct kmem_cache *s)
692 : {
693 : #ifndef CONFIG_SLUB
694 : return s->object_size;
695 :
696 : #else /* CONFIG_SLUB */
697 : # ifdef CONFIG_SLUB_DEBUG
698 : /*
699 : * Debugging requires use of the padding between object
700 : * and whatever may come after it.
701 : */
702 113 : if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
703 0 : return s->object_size;
704 : # endif
705 : if (s->flags & SLAB_KASAN)
706 : return s->object_size;
707 : /*
708 : * If we have the need to store the freelist pointer
709 : * back there or track user information then we can
710 : * only use the space before that information.
711 : */
712 113 : if (s->flags & (SLAB_TYPESAFE_BY_RCU | SLAB_STORE_USER))
713 0 : return s->inuse;
714 : /*
715 : * Else we can use all the padding etc for the allocation
716 : */
717 113 : return s->size;
718 : #endif
719 : }
720 :
721 : static inline struct kmem_cache *slab_pre_alloc_hook(struct kmem_cache *s,
722 : struct list_lru *lru,
723 : struct obj_cgroup **objcgp,
724 : size_t size, gfp_t flags)
725 : {
726 420882 : flags &= gfp_allowed_mask;
727 :
728 420882 : might_alloc(flags);
729 :
730 420882 : if (should_failslab(s, flags))
731 : return NULL;
732 :
733 420882 : if (!memcg_slab_pre_alloc_hook(s, lru, objcgp, size, flags))
734 : return NULL;
735 :
736 : return s;
737 : }
738 :
739 420882 : static inline void slab_post_alloc_hook(struct kmem_cache *s,
740 : struct obj_cgroup *objcg, gfp_t flags,
741 : size_t size, void **p, bool init,
742 : unsigned int orig_size)
743 : {
744 420882 : unsigned int zero_size = s->object_size;
745 : size_t i;
746 :
747 420882 : flags &= gfp_allowed_mask;
748 :
749 : /*
750 : * For kmalloc object, the allocated memory size(object_size) is likely
751 : * larger than the requested size(orig_size). If redzone check is
752 : * enabled for the extra space, don't zero it, as it will be redzoned
753 : * soon. The redzone operation for this extra space could be seen as a
754 : * replacement of current poisoning under certain debug option, and
755 : * won't break other sanity checks.
756 : */
757 841764 : if (kmem_cache_debug_flags(s, SLAB_STORE_USER | SLAB_RED_ZONE) &&
758 0 : (s->flags & SLAB_KMALLOC))
759 0 : zero_size = orig_size;
760 :
761 : /*
762 : * As memory initialization might be integrated into KASAN,
763 : * kasan_slab_alloc and initialization memset must be
764 : * kept together to avoid discrepancies in behavior.
765 : *
766 : * As p[i] might get tagged, memset and kmemleak hook come after KASAN.
767 : */
768 841764 : for (i = 0; i < size; i++) {
769 420882 : p[i] = kasan_slab_alloc(s, p[i], flags, init);
770 420882 : if (p[i] && init && !kasan_has_integrated_init())
771 414777 : memset(p[i], 0, zero_size);
772 420882 : kmemleak_alloc_recursive(p[i], s->object_size, 1,
773 : s->flags, flags);
774 420882 : kmsan_slab_alloc(s, p[i], flags);
775 : }
776 :
777 420882 : memcg_slab_post_alloc_hook(s, objcg, flags, size, p);
778 420882 : }
779 :
780 : #ifndef CONFIG_SLOB
781 : /*
782 : * The slab lists for all objects.
783 : */
784 : struct kmem_cache_node {
785 : #ifdef CONFIG_SLAB
786 : raw_spinlock_t list_lock;
787 : struct list_head slabs_partial; /* partial list first, better asm code */
788 : struct list_head slabs_full;
789 : struct list_head slabs_free;
790 : unsigned long total_slabs; /* length of all slab lists */
791 : unsigned long free_slabs; /* length of free slab list only */
792 : unsigned long free_objects;
793 : unsigned int free_limit;
794 : unsigned int colour_next; /* Per-node cache coloring */
795 : struct array_cache *shared; /* shared per node */
796 : struct alien_cache **alien; /* on other nodes */
797 : unsigned long next_reap; /* updated without locking */
798 : int free_touched; /* updated without locking */
799 : #endif
800 :
801 : #ifdef CONFIG_SLUB
802 : spinlock_t list_lock;
803 : unsigned long nr_partial;
804 : struct list_head partial;
805 : #ifdef CONFIG_SLUB_DEBUG
806 : atomic_long_t nr_slabs;
807 : atomic_long_t total_objects;
808 : struct list_head full;
809 : #endif
810 : #endif
811 :
812 : };
813 :
814 : static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
815 : {
816 41969 : return s->node[node];
817 : }
818 :
819 : /*
820 : * Iterator over all nodes. The body will be executed for each node that has
821 : * a kmem_cache_node structure allocated (which is true for all online nodes)
822 : */
823 : #define for_each_kmem_cache_node(__s, __node, __n) \
824 : for (__node = 0; __node < nr_node_ids; __node++) \
825 : if ((__n = get_node(__s, __node)))
826 :
827 : #endif
828 :
829 : #if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)
830 : void dump_unreclaimable_slab(void);
831 : #else
832 : static inline void dump_unreclaimable_slab(void)
833 : {
834 : }
835 : #endif
836 :
837 : void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr);
838 :
839 : #ifdef CONFIG_SLAB_FREELIST_RANDOM
840 : int cache_random_seq_create(struct kmem_cache *cachep, unsigned int count,
841 : gfp_t gfp);
842 : void cache_random_seq_destroy(struct kmem_cache *cachep);
843 : #else
844 : static inline int cache_random_seq_create(struct kmem_cache *cachep,
845 : unsigned int count, gfp_t gfp)
846 : {
847 : return 0;
848 : }
849 : static inline void cache_random_seq_destroy(struct kmem_cache *cachep) { }
850 : #endif /* CONFIG_SLAB_FREELIST_RANDOM */
851 :
852 : static inline bool slab_want_init_on_alloc(gfp_t flags, struct kmem_cache *c)
853 : {
854 420882 : if (static_branch_maybe(CONFIG_INIT_ON_ALLOC_DEFAULT_ON,
855 : &init_on_alloc)) {
856 0 : if (c->ctor)
857 : return false;
858 0 : if (c->flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON))
859 0 : return flags & __GFP_ZERO;
860 : return true;
861 : }
862 420882 : return flags & __GFP_ZERO;
863 : }
864 :
865 : static inline bool slab_want_init_on_free(struct kmem_cache *c)
866 : {
867 829220 : if (static_branch_maybe(CONFIG_INIT_ON_FREE_DEFAULT_ON,
868 : &init_on_free))
869 0 : return !(c->ctor ||
870 0 : (c->flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)));
871 : return false;
872 : }
873 :
874 : #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_SLUB_DEBUG)
875 : void debugfs_slab_release(struct kmem_cache *);
876 : #else
877 : static inline void debugfs_slab_release(struct kmem_cache *s) { }
878 : #endif
879 :
880 : #ifdef CONFIG_PRINTK
881 : #define KS_ADDRS_COUNT 16
882 : struct kmem_obj_info {
883 : void *kp_ptr;
884 : struct slab *kp_slab;
885 : void *kp_objp;
886 : unsigned long kp_data_offset;
887 : struct kmem_cache *kp_slab_cache;
888 : void *kp_ret;
889 : void *kp_stack[KS_ADDRS_COUNT];
890 : void *kp_free_stack[KS_ADDRS_COUNT];
891 : };
892 : void __kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct slab *slab);
893 : #endif
894 :
895 : #ifdef CONFIG_HAVE_HARDENED_USERCOPY_ALLOCATOR
896 : void __check_heap_object(const void *ptr, unsigned long n,
897 : const struct slab *slab, bool to_user);
898 : #else
899 : static inline
900 : void __check_heap_object(const void *ptr, unsigned long n,
901 : const struct slab *slab, bool to_user)
902 : {
903 : }
904 : #endif
905 :
906 : #ifdef CONFIG_SLUB_DEBUG
907 : void skip_orig_size_check(struct kmem_cache *s, const void *object);
908 : #endif
909 :
910 : #endif /* MM_SLAB_H */
|