LCOV - code coverage report
Current view: top level - mm - swapfile.c (source / functions) Hit Total Coverage
Test: coverage.info Lines: 13 1358 1.0 %
Date: 2023-04-06 08:38:28 Functions: 3 81 3.7 %

          Line data    Source code
       1             : // SPDX-License-Identifier: GPL-2.0-only
       2             : /*
       3             :  *  linux/mm/swapfile.c
       4             :  *
       5             :  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
       6             :  *  Swap reorganised 29.12.95, Stephen Tweedie
       7             :  */
       8             : 
       9             : #include <linux/blkdev.h>
      10             : #include <linux/mm.h>
      11             : #include <linux/sched/mm.h>
      12             : #include <linux/sched/task.h>
      13             : #include <linux/hugetlb.h>
      14             : #include <linux/mman.h>
      15             : #include <linux/slab.h>
      16             : #include <linux/kernel_stat.h>
      17             : #include <linux/swap.h>
      18             : #include <linux/vmalloc.h>
      19             : #include <linux/pagemap.h>
      20             : #include <linux/namei.h>
      21             : #include <linux/shmem_fs.h>
      22             : #include <linux/blk-cgroup.h>
      23             : #include <linux/random.h>
      24             : #include <linux/writeback.h>
      25             : #include <linux/proc_fs.h>
      26             : #include <linux/seq_file.h>
      27             : #include <linux/init.h>
      28             : #include <linux/ksm.h>
      29             : #include <linux/rmap.h>
      30             : #include <linux/security.h>
      31             : #include <linux/backing-dev.h>
      32             : #include <linux/mutex.h>
      33             : #include <linux/capability.h>
      34             : #include <linux/syscalls.h>
      35             : #include <linux/memcontrol.h>
      36             : #include <linux/poll.h>
      37             : #include <linux/oom.h>
      38             : #include <linux/frontswap.h>
      39             : #include <linux/swapfile.h>
      40             : #include <linux/export.h>
      41             : #include <linux/swap_slots.h>
      42             : #include <linux/sort.h>
      43             : #include <linux/completion.h>
      44             : 
      45             : #include <asm/tlbflush.h>
      46             : #include <linux/swapops.h>
      47             : #include <linux/swap_cgroup.h>
      48             : #include "swap.h"
      49             : 
      50             : static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
      51             :                                  unsigned char);
      52             : static void free_swap_count_continuations(struct swap_info_struct *);
      53             : 
      54             : static DEFINE_SPINLOCK(swap_lock);
      55             : static unsigned int nr_swapfiles;
      56             : atomic_long_t nr_swap_pages;
      57             : /*
      58             :  * Some modules use swappable objects and may try to swap them out under
      59             :  * memory pressure (via the shrinker). Before doing so, they may wish to
      60             :  * check to see if any swap space is available.
      61             :  */
      62             : EXPORT_SYMBOL_GPL(nr_swap_pages);
      63             : /* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
      64             : long total_swap_pages;
      65             : static int least_priority = -1;
      66             : unsigned long swapfile_maximum_size;
      67             : #ifdef CONFIG_MIGRATION
      68             : bool swap_migration_ad_supported;
      69             : #endif  /* CONFIG_MIGRATION */
      70             : 
      71             : static const char Bad_file[] = "Bad swap file entry ";
      72             : static const char Unused_file[] = "Unused swap file entry ";
      73             : static const char Bad_offset[] = "Bad swap offset entry ";
      74             : static const char Unused_offset[] = "Unused swap offset entry ";
      75             : 
      76             : /*
      77             :  * all active swap_info_structs
      78             :  * protected with swap_lock, and ordered by priority.
      79             :  */
      80             : static PLIST_HEAD(swap_active_head);
      81             : 
      82             : /*
      83             :  * all available (active, not full) swap_info_structs
      84             :  * protected with swap_avail_lock, ordered by priority.
      85             :  * This is used by folio_alloc_swap() instead of swap_active_head
      86             :  * because swap_active_head includes all swap_info_structs,
      87             :  * but folio_alloc_swap() doesn't need to look at full ones.
      88             :  * This uses its own lock instead of swap_lock because when a
      89             :  * swap_info_struct changes between not-full/full, it needs to
      90             :  * add/remove itself to/from this list, but the swap_info_struct->lock
      91             :  * is held and the locking order requires swap_lock to be taken
      92             :  * before any swap_info_struct->lock.
      93             :  */
      94             : static struct plist_head *swap_avail_heads;
      95             : static DEFINE_SPINLOCK(swap_avail_lock);
      96             : 
      97             : struct swap_info_struct *swap_info[MAX_SWAPFILES];
      98             : 
      99             : static DEFINE_MUTEX(swapon_mutex);
     100             : 
     101             : static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
     102             : /* Activity counter to indicate that a swapon or swapoff has occurred */
     103             : static atomic_t proc_poll_event = ATOMIC_INIT(0);
     104             : 
     105             : atomic_t nr_rotate_swap = ATOMIC_INIT(0);
     106             : 
     107             : static struct swap_info_struct *swap_type_to_swap_info(int type)
     108             : {
     109           0 :         if (type >= MAX_SWAPFILES)
     110             :                 return NULL;
     111             : 
     112           0 :         return READ_ONCE(swap_info[type]); /* rcu_dereference() */
     113             : }
     114             : 
     115             : static inline unsigned char swap_count(unsigned char ent)
     116             : {
     117           0 :         return ent & ~SWAP_HAS_CACHE;       /* may include COUNT_CONTINUED flag */
     118             : }
     119             : 
     120             : /* Reclaim the swap entry anyway if possible */
     121             : #define TTRS_ANYWAY             0x1
     122             : /*
     123             :  * Reclaim the swap entry if there are no more mappings of the
     124             :  * corresponding page
     125             :  */
     126             : #define TTRS_UNMAPPED           0x2
     127             : /* Reclaim the swap entry if swap is getting full*/
     128             : #define TTRS_FULL               0x4
     129             : 
     130             : /* returns 1 if swap entry is freed */
     131           0 : static int __try_to_reclaim_swap(struct swap_info_struct *si,
     132             :                                  unsigned long offset, unsigned long flags)
     133             : {
     134           0 :         swp_entry_t entry = swp_entry(si->type, offset);
     135             :         struct folio *folio;
     136           0 :         int ret = 0;
     137             : 
     138           0 :         folio = filemap_get_folio(swap_address_space(entry), offset);
     139           0 :         if (!folio)
     140             :                 return 0;
     141             :         /*
     142             :          * When this function is called from scan_swap_map_slots() and it's
     143             :          * called by vmscan.c at reclaiming folios. So we hold a folio lock
     144             :          * here. We have to use trylock for avoiding deadlock. This is a special
     145             :          * case and you should use folio_free_swap() with explicit folio_lock()
     146             :          * in usual operations.
     147             :          */
     148           0 :         if (folio_trylock(folio)) {
     149           0 :                 if ((flags & TTRS_ANYWAY) ||
     150           0 :                     ((flags & TTRS_UNMAPPED) && !folio_mapped(folio)) ||
     151           0 :                     ((flags & TTRS_FULL) && mem_cgroup_swap_full(folio)))
     152           0 :                         ret = folio_free_swap(folio);
     153           0 :                 folio_unlock(folio);
     154             :         }
     155             :         folio_put(folio);
     156             :         return ret;
     157             : }
     158             : 
     159             : static inline struct swap_extent *first_se(struct swap_info_struct *sis)
     160             : {
     161           0 :         struct rb_node *rb = rb_first(&sis->swap_extent_root);
     162           0 :         return rb_entry(rb, struct swap_extent, rb_node);
     163             : }
     164             : 
     165             : static inline struct swap_extent *next_se(struct swap_extent *se)
     166             : {
     167           0 :         struct rb_node *rb = rb_next(&se->rb_node);
     168           0 :         return rb ? rb_entry(rb, struct swap_extent, rb_node) : NULL;
     169             : }
     170             : 
     171             : /*
     172             :  * swapon tell device that all the old swap contents can be discarded,
     173             :  * to allow the swap device to optimize its wear-levelling.
     174             :  */
     175           0 : static int discard_swap(struct swap_info_struct *si)
     176             : {
     177             :         struct swap_extent *se;
     178             :         sector_t start_block;
     179             :         sector_t nr_blocks;
     180           0 :         int err = 0;
     181             : 
     182             :         /* Do not discard the swap header page! */
     183           0 :         se = first_se(si);
     184           0 :         start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
     185           0 :         nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
     186           0 :         if (nr_blocks) {
     187           0 :                 err = blkdev_issue_discard(si->bdev, start_block,
     188             :                                 nr_blocks, GFP_KERNEL);
     189           0 :                 if (err)
     190             :                         return err;
     191           0 :                 cond_resched();
     192             :         }
     193             : 
     194           0 :         for (se = next_se(se); se; se = next_se(se)) {
     195           0 :                 start_block = se->start_block << (PAGE_SHIFT - 9);
     196           0 :                 nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
     197             : 
     198           0 :                 err = blkdev_issue_discard(si->bdev, start_block,
     199             :                                 nr_blocks, GFP_KERNEL);
     200           0 :                 if (err)
     201             :                         break;
     202             : 
     203           0 :                 cond_resched();
     204             :         }
     205             :         return err;             /* That will often be -EOPNOTSUPP */
     206             : }
     207             : 
     208             : static struct swap_extent *
     209           0 : offset_to_swap_extent(struct swap_info_struct *sis, unsigned long offset)
     210             : {
     211             :         struct swap_extent *se;
     212             :         struct rb_node *rb;
     213             : 
     214           0 :         rb = sis->swap_extent_root.rb_node;
     215           0 :         while (rb) {
     216           0 :                 se = rb_entry(rb, struct swap_extent, rb_node);
     217           0 :                 if (offset < se->start_page)
     218           0 :                         rb = rb->rb_left;
     219           0 :                 else if (offset >= se->start_page + se->nr_pages)
     220           0 :                         rb = rb->rb_right;
     221             :                 else
     222           0 :                         return se;
     223             :         }
     224             :         /* It *must* be present */
     225           0 :         BUG();
     226             : }
     227             : 
     228           0 : sector_t swap_page_sector(struct page *page)
     229             : {
     230           0 :         struct swap_info_struct *sis = page_swap_info(page);
     231             :         struct swap_extent *se;
     232             :         sector_t sector;
     233             :         pgoff_t offset;
     234             : 
     235           0 :         offset = __page_file_index(page);
     236           0 :         se = offset_to_swap_extent(sis, offset);
     237           0 :         sector = se->start_block + (offset - se->start_page);
     238           0 :         return sector << (PAGE_SHIFT - 9);
     239             : }
     240             : 
     241             : /*
     242             :  * swap allocation tell device that a cluster of swap can now be discarded,
     243             :  * to allow the swap device to optimize its wear-levelling.
     244             :  */
     245           0 : static void discard_swap_cluster(struct swap_info_struct *si,
     246             :                                  pgoff_t start_page, pgoff_t nr_pages)
     247             : {
     248           0 :         struct swap_extent *se = offset_to_swap_extent(si, start_page);
     249             : 
     250           0 :         while (nr_pages) {
     251           0 :                 pgoff_t offset = start_page - se->start_page;
     252           0 :                 sector_t start_block = se->start_block + offset;
     253           0 :                 sector_t nr_blocks = se->nr_pages - offset;
     254             : 
     255           0 :                 if (nr_blocks > nr_pages)
     256           0 :                         nr_blocks = nr_pages;
     257           0 :                 start_page += nr_blocks;
     258           0 :                 nr_pages -= nr_blocks;
     259             : 
     260           0 :                 start_block <<= PAGE_SHIFT - 9;
     261           0 :                 nr_blocks <<= PAGE_SHIFT - 9;
     262           0 :                 if (blkdev_issue_discard(si->bdev, start_block,
     263             :                                         nr_blocks, GFP_NOIO))
     264             :                         break;
     265             : 
     266             :                 se = next_se(se);
     267             :         }
     268           0 : }
     269             : 
     270             : #ifdef CONFIG_THP_SWAP
     271             : #define SWAPFILE_CLUSTER        HPAGE_PMD_NR
     272             : 
     273             : #define swap_entry_size(size)   (size)
     274             : #else
     275             : #define SWAPFILE_CLUSTER        256
     276             : 
     277             : /*
     278             :  * Define swap_entry_size() as constant to let compiler to optimize
     279             :  * out some code if !CONFIG_THP_SWAP
     280             :  */
     281             : #define swap_entry_size(size)   1
     282             : #endif
     283             : #define LATENCY_LIMIT           256
     284             : 
     285             : static inline void cluster_set_flag(struct swap_cluster_info *info,
     286             :         unsigned int flag)
     287             : {
     288           0 :         info->flags = flag;
     289             : }
     290             : 
     291             : static inline unsigned int cluster_count(struct swap_cluster_info *info)
     292             : {
     293           0 :         return info->data;
     294             : }
     295             : 
     296             : static inline void cluster_set_count(struct swap_cluster_info *info,
     297             :                                      unsigned int c)
     298             : {
     299           0 :         info->data = c;
     300             : }
     301             : 
     302             : static inline void cluster_set_count_flag(struct swap_cluster_info *info,
     303             :                                          unsigned int c, unsigned int f)
     304             : {
     305           0 :         info->flags = f;
     306           0 :         info->data = c;
     307             : }
     308             : 
     309             : static inline unsigned int cluster_next(struct swap_cluster_info *info)
     310             : {
     311           0 :         return info->data;
     312             : }
     313             : 
     314             : static inline void cluster_set_next(struct swap_cluster_info *info,
     315             :                                     unsigned int n)
     316             : {
     317           0 :         info->data = n;
     318             : }
     319             : 
     320             : static inline void cluster_set_next_flag(struct swap_cluster_info *info,
     321             :                                          unsigned int n, unsigned int f)
     322             : {
     323           0 :         info->flags = f;
     324           0 :         info->data = n;
     325             : }
     326             : 
     327             : static inline bool cluster_is_free(struct swap_cluster_info *info)
     328             : {
     329           0 :         return info->flags & CLUSTER_FLAG_FREE;
     330             : }
     331             : 
     332             : static inline bool cluster_is_null(struct swap_cluster_info *info)
     333             : {
     334           0 :         return info->flags & CLUSTER_FLAG_NEXT_NULL;
     335             : }
     336             : 
     337             : static inline void cluster_set_null(struct swap_cluster_info *info)
     338             : {
     339           0 :         info->flags = CLUSTER_FLAG_NEXT_NULL;
     340           0 :         info->data = 0;
     341             : }
     342             : 
     343             : static inline bool cluster_is_huge(struct swap_cluster_info *info)
     344             : {
     345             :         if (IS_ENABLED(CONFIG_THP_SWAP))
     346             :                 return info->flags & CLUSTER_FLAG_HUGE;
     347             :         return false;
     348             : }
     349             : 
     350             : static inline void cluster_clear_huge(struct swap_cluster_info *info)
     351             : {
     352             :         info->flags &= ~CLUSTER_FLAG_HUGE;
     353             : }
     354             : 
     355             : static inline struct swap_cluster_info *lock_cluster(struct swap_info_struct *si,
     356             :                                                      unsigned long offset)
     357             : {
     358             :         struct swap_cluster_info *ci;
     359             : 
     360           0 :         ci = si->cluster_info;
     361           0 :         if (ci) {
     362           0 :                 ci += offset / SWAPFILE_CLUSTER;
     363           0 :                 spin_lock(&ci->lock);
     364             :         }
     365             :         return ci;
     366             : }
     367             : 
     368             : static inline void unlock_cluster(struct swap_cluster_info *ci)
     369             : {
     370           0 :         if (ci)
     371           0 :                 spin_unlock(&ci->lock);
     372             : }
     373             : 
     374             : /*
     375             :  * Determine the locking method in use for this device.  Return
     376             :  * swap_cluster_info if SSD-style cluster-based locking is in place.
     377             :  */
     378             : static inline struct swap_cluster_info *lock_cluster_or_swap_info(
     379             :                 struct swap_info_struct *si, unsigned long offset)
     380             : {
     381             :         struct swap_cluster_info *ci;
     382             : 
     383             :         /* Try to use fine-grained SSD-style locking if available: */
     384           0 :         ci = lock_cluster(si, offset);
     385             :         /* Otherwise, fall back to traditional, coarse locking: */
     386           0 :         if (!ci)
     387           0 :                 spin_lock(&si->lock);
     388             : 
     389             :         return ci;
     390             : }
     391             : 
     392             : static inline void unlock_cluster_or_swap_info(struct swap_info_struct *si,
     393             :                                                struct swap_cluster_info *ci)
     394             : {
     395           0 :         if (ci)
     396             :                 unlock_cluster(ci);
     397             :         else
     398           0 :                 spin_unlock(&si->lock);
     399             : }
     400             : 
     401             : static inline bool cluster_list_empty(struct swap_cluster_list *list)
     402             : {
     403           0 :         return cluster_is_null(&list->head);
     404             : }
     405             : 
     406             : static inline unsigned int cluster_list_first(struct swap_cluster_list *list)
     407             : {
     408           0 :         return cluster_next(&list->head);
     409             : }
     410             : 
     411             : static void cluster_list_init(struct swap_cluster_list *list)
     412             : {
     413           0 :         cluster_set_null(&list->head);
     414           0 :         cluster_set_null(&list->tail);
     415             : }
     416             : 
     417             : static void cluster_list_add_tail(struct swap_cluster_list *list,
     418             :                                   struct swap_cluster_info *ci,
     419             :                                   unsigned int idx)
     420             : {
     421           0 :         if (cluster_list_empty(list)) {
     422           0 :                 cluster_set_next_flag(&list->head, idx, 0);
     423           0 :                 cluster_set_next_flag(&list->tail, idx, 0);
     424             :         } else {
     425             :                 struct swap_cluster_info *ci_tail;
     426           0 :                 unsigned int tail = cluster_next(&list->tail);
     427             : 
     428             :                 /*
     429             :                  * Nested cluster lock, but both cluster locks are
     430             :                  * only acquired when we held swap_info_struct->lock
     431             :                  */
     432           0 :                 ci_tail = ci + tail;
     433           0 :                 spin_lock_nested(&ci_tail->lock, SINGLE_DEPTH_NESTING);
     434           0 :                 cluster_set_next(ci_tail, idx);
     435           0 :                 spin_unlock(&ci_tail->lock);
     436           0 :                 cluster_set_next_flag(&list->tail, idx, 0);
     437             :         }
     438             : }
     439             : 
     440             : static unsigned int cluster_list_del_first(struct swap_cluster_list *list,
     441             :                                            struct swap_cluster_info *ci)
     442             : {
     443             :         unsigned int idx;
     444             : 
     445           0 :         idx = cluster_next(&list->head);
     446           0 :         if (cluster_next(&list->tail) == idx) {
     447           0 :                 cluster_set_null(&list->head);
     448           0 :                 cluster_set_null(&list->tail);
     449             :         } else
     450           0 :                 cluster_set_next_flag(&list->head,
     451           0 :                                       cluster_next(&ci[idx]), 0);
     452             : 
     453             :         return idx;
     454             : }
     455             : 
     456             : /* Add a cluster to discard list and schedule it to do discard */
     457           0 : static void swap_cluster_schedule_discard(struct swap_info_struct *si,
     458             :                 unsigned int idx)
     459             : {
     460             :         /*
     461             :          * If scan_swap_map_slots() can't find a free cluster, it will check
     462             :          * si->swap_map directly. To make sure the discarding cluster isn't
     463             :          * taken by scan_swap_map_slots(), mark the swap entries bad (occupied).
     464             :          * It will be cleared after discard
     465             :          */
     466           0 :         memset(si->swap_map + idx * SWAPFILE_CLUSTER,
     467             :                         SWAP_MAP_BAD, SWAPFILE_CLUSTER);
     468             : 
     469           0 :         cluster_list_add_tail(&si->discard_clusters, si->cluster_info, idx);
     470             : 
     471           0 :         schedule_work(&si->discard_work);
     472           0 : }
     473             : 
     474             : static void __free_cluster(struct swap_info_struct *si, unsigned long idx)
     475             : {
     476           0 :         struct swap_cluster_info *ci = si->cluster_info;
     477             : 
     478           0 :         cluster_set_flag(ci + idx, CLUSTER_FLAG_FREE);
     479           0 :         cluster_list_add_tail(&si->free_clusters, ci, idx);
     480             : }
     481             : 
     482             : /*
     483             :  * Doing discard actually. After a cluster discard is finished, the cluster
     484             :  * will be added to free cluster list. caller should hold si->lock.
     485             : */
     486           0 : static void swap_do_scheduled_discard(struct swap_info_struct *si)
     487             : {
     488             :         struct swap_cluster_info *info, *ci;
     489             :         unsigned int idx;
     490             : 
     491           0 :         info = si->cluster_info;
     492             : 
     493           0 :         while (!cluster_list_empty(&si->discard_clusters)) {
     494           0 :                 idx = cluster_list_del_first(&si->discard_clusters, info);
     495           0 :                 spin_unlock(&si->lock);
     496             : 
     497           0 :                 discard_swap_cluster(si, idx * SWAPFILE_CLUSTER,
     498             :                                 SWAPFILE_CLUSTER);
     499             : 
     500           0 :                 spin_lock(&si->lock);
     501           0 :                 ci = lock_cluster(si, idx * SWAPFILE_CLUSTER);
     502           0 :                 __free_cluster(si, idx);
     503           0 :                 memset(si->swap_map + idx * SWAPFILE_CLUSTER,
     504             :                                 0, SWAPFILE_CLUSTER);
     505             :                 unlock_cluster(ci);
     506             :         }
     507           0 : }
     508             : 
     509           0 : static void swap_discard_work(struct work_struct *work)
     510             : {
     511             :         struct swap_info_struct *si;
     512             : 
     513           0 :         si = container_of(work, struct swap_info_struct, discard_work);
     514             : 
     515           0 :         spin_lock(&si->lock);
     516           0 :         swap_do_scheduled_discard(si);
     517           0 :         spin_unlock(&si->lock);
     518           0 : }
     519             : 
     520           0 : static void swap_users_ref_free(struct percpu_ref *ref)
     521             : {
     522             :         struct swap_info_struct *si;
     523             : 
     524           0 :         si = container_of(ref, struct swap_info_struct, users);
     525           0 :         complete(&si->comp);
     526           0 : }
     527             : 
     528             : static void alloc_cluster(struct swap_info_struct *si, unsigned long idx)
     529             : {
     530           0 :         struct swap_cluster_info *ci = si->cluster_info;
     531             : 
     532             :         VM_BUG_ON(cluster_list_first(&si->free_clusters) != idx);
     533           0 :         cluster_list_del_first(&si->free_clusters, ci);
     534           0 :         cluster_set_count_flag(ci + idx, 0, 0);
     535             : }
     536             : 
     537           0 : static void free_cluster(struct swap_info_struct *si, unsigned long idx)
     538             : {
     539           0 :         struct swap_cluster_info *ci = si->cluster_info + idx;
     540             : 
     541             :         VM_BUG_ON(cluster_count(ci) != 0);
     542             :         /*
     543             :          * If the swap is discardable, prepare discard the cluster
     544             :          * instead of free it immediately. The cluster will be freed
     545             :          * after discard.
     546             :          */
     547           0 :         if ((si->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) ==
     548             :             (SWP_WRITEOK | SWP_PAGE_DISCARD)) {
     549           0 :                 swap_cluster_schedule_discard(si, idx);
     550           0 :                 return;
     551             :         }
     552             : 
     553             :         __free_cluster(si, idx);
     554             : }
     555             : 
     556             : /*
     557             :  * The cluster corresponding to page_nr will be used. The cluster will be
     558             :  * removed from free cluster list and its usage counter will be increased.
     559             :  */
     560           0 : static void inc_cluster_info_page(struct swap_info_struct *p,
     561             :         struct swap_cluster_info *cluster_info, unsigned long page_nr)
     562             : {
     563           0 :         unsigned long idx = page_nr / SWAPFILE_CLUSTER;
     564             : 
     565           0 :         if (!cluster_info)
     566             :                 return;
     567           0 :         if (cluster_is_free(&cluster_info[idx]))
     568             :                 alloc_cluster(p, idx);
     569             : 
     570             :         VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER);
     571           0 :         cluster_set_count(&cluster_info[idx],
     572           0 :                 cluster_count(&cluster_info[idx]) + 1);
     573             : }
     574             : 
     575             : /*
     576             :  * The cluster corresponding to page_nr decreases one usage. If the usage
     577             :  * counter becomes 0, which means no page in the cluster is in using, we can
     578             :  * optionally discard the cluster and add it to free cluster list.
     579             :  */
     580           0 : static void dec_cluster_info_page(struct swap_info_struct *p,
     581             :         struct swap_cluster_info *cluster_info, unsigned long page_nr)
     582             : {
     583           0 :         unsigned long idx = page_nr / SWAPFILE_CLUSTER;
     584             : 
     585           0 :         if (!cluster_info)
     586             :                 return;
     587             : 
     588             :         VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0);
     589           0 :         cluster_set_count(&cluster_info[idx],
     590           0 :                 cluster_count(&cluster_info[idx]) - 1);
     591             : 
     592           0 :         if (cluster_count(&cluster_info[idx]) == 0)
     593           0 :                 free_cluster(p, idx);
     594             : }
     595             : 
     596             : /*
     597             :  * It's possible scan_swap_map_slots() uses a free cluster in the middle of free
     598             :  * cluster list. Avoiding such abuse to avoid list corruption.
     599             :  */
     600             : static bool
     601             : scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si,
     602             :         unsigned long offset)
     603             : {
     604             :         struct percpu_cluster *percpu_cluster;
     605             :         bool conflict;
     606             : 
     607           0 :         offset /= SWAPFILE_CLUSTER;
     608           0 :         conflict = !cluster_list_empty(&si->free_clusters) &&
     609           0 :                 offset != cluster_list_first(&si->free_clusters) &&
     610           0 :                 cluster_is_free(&si->cluster_info[offset]);
     611             : 
     612           0 :         if (!conflict)
     613             :                 return false;
     614             : 
     615           0 :         percpu_cluster = this_cpu_ptr(si->percpu_cluster);
     616           0 :         cluster_set_null(&percpu_cluster->index);
     617             :         return true;
     618             : }
     619             : 
     620             : /*
     621             :  * Try to get a swap entry from current cpu's swap entry pool (a cluster). This
     622             :  * might involve allocating a new cluster for current CPU too.
     623             :  */
     624           0 : static bool scan_swap_map_try_ssd_cluster(struct swap_info_struct *si,
     625             :         unsigned long *offset, unsigned long *scan_base)
     626             : {
     627             :         struct percpu_cluster *cluster;
     628             :         struct swap_cluster_info *ci;
     629             :         unsigned long tmp, max;
     630             : 
     631             : new_cluster:
     632           0 :         cluster = this_cpu_ptr(si->percpu_cluster);
     633           0 :         if (cluster_is_null(&cluster->index)) {
     634           0 :                 if (!cluster_list_empty(&si->free_clusters)) {
     635           0 :                         cluster->index = si->free_clusters.head;
     636           0 :                         cluster->next = cluster_next(&cluster->index) *
     637             :                                         SWAPFILE_CLUSTER;
     638           0 :                 } else if (!cluster_list_empty(&si->discard_clusters)) {
     639             :                         /*
     640             :                          * we don't have free cluster but have some clusters in
     641             :                          * discarding, do discard now and reclaim them, then
     642             :                          * reread cluster_next_cpu since we dropped si->lock
     643             :                          */
     644           0 :                         swap_do_scheduled_discard(si);
     645           0 :                         *scan_base = this_cpu_read(*si->cluster_next_cpu);
     646           0 :                         *offset = *scan_base;
     647           0 :                         goto new_cluster;
     648             :                 } else
     649             :                         return false;
     650             :         }
     651             : 
     652             :         /*
     653             :          * Other CPUs can use our cluster if they can't find a free cluster,
     654             :          * check if there is still free entry in the cluster
     655             :          */
     656           0 :         tmp = cluster->next;
     657           0 :         max = min_t(unsigned long, si->max,
     658             :                     (cluster_next(&cluster->index) + 1) * SWAPFILE_CLUSTER);
     659           0 :         if (tmp < max) {
     660           0 :                 ci = lock_cluster(si, tmp);
     661           0 :                 while (tmp < max) {
     662           0 :                         if (!si->swap_map[tmp])
     663             :                                 break;
     664           0 :                         tmp++;
     665             :                 }
     666             :                 unlock_cluster(ci);
     667             :         }
     668           0 :         if (tmp >= max) {
     669           0 :                 cluster_set_null(&cluster->index);
     670             :                 goto new_cluster;
     671             :         }
     672           0 :         cluster->next = tmp + 1;
     673           0 :         *offset = tmp;
     674           0 :         *scan_base = tmp;
     675           0 :         return true;
     676             : }
     677             : 
     678             : static void __del_from_avail_list(struct swap_info_struct *p)
     679             : {
     680             :         int nid;
     681             : 
     682           0 :         for_each_node(nid)
     683           0 :                 plist_del(&p->avail_lists[nid], &swap_avail_heads[nid]);
     684             : }
     685             : 
     686             : static void del_from_avail_list(struct swap_info_struct *p)
     687             : {
     688             :         spin_lock(&swap_avail_lock);
     689           0 :         __del_from_avail_list(p);
     690           0 :         spin_unlock(&swap_avail_lock);
     691             : }
     692             : 
     693           0 : static void swap_range_alloc(struct swap_info_struct *si, unsigned long offset,
     694             :                              unsigned int nr_entries)
     695             : {
     696           0 :         unsigned int end = offset + nr_entries - 1;
     697             : 
     698           0 :         if (offset == si->lowest_bit)
     699           0 :                 si->lowest_bit += nr_entries;
     700           0 :         if (end == si->highest_bit)
     701           0 :                 WRITE_ONCE(si->highest_bit, si->highest_bit - nr_entries);
     702           0 :         WRITE_ONCE(si->inuse_pages, si->inuse_pages + nr_entries);
     703           0 :         if (si->inuse_pages == si->pages) {
     704           0 :                 si->lowest_bit = si->max;
     705           0 :                 si->highest_bit = 0;
     706             :                 del_from_avail_list(si);
     707             :         }
     708           0 : }
     709             : 
     710           0 : static void add_to_avail_list(struct swap_info_struct *p)
     711             : {
     712             :         int nid;
     713             : 
     714           0 :         spin_lock(&swap_avail_lock);
     715           0 :         for_each_node(nid) {
     716           0 :                 WARN_ON(!plist_node_empty(&p->avail_lists[nid]));
     717           0 :                 plist_add(&p->avail_lists[nid], &swap_avail_heads[nid]);
     718             :         }
     719           0 :         spin_unlock(&swap_avail_lock);
     720           0 : }
     721             : 
     722           0 : static void swap_range_free(struct swap_info_struct *si, unsigned long offset,
     723             :                             unsigned int nr_entries)
     724             : {
     725           0 :         unsigned long begin = offset;
     726           0 :         unsigned long end = offset + nr_entries - 1;
     727             :         void (*swap_slot_free_notify)(struct block_device *, unsigned long);
     728             : 
     729           0 :         if (offset < si->lowest_bit)
     730           0 :                 si->lowest_bit = offset;
     731           0 :         if (end > si->highest_bit) {
     732           0 :                 bool was_full = !si->highest_bit;
     733             : 
     734           0 :                 WRITE_ONCE(si->highest_bit, end);
     735           0 :                 if (was_full && (si->flags & SWP_WRITEOK))
     736           0 :                         add_to_avail_list(si);
     737             :         }
     738           0 :         atomic_long_add(nr_entries, &nr_swap_pages);
     739           0 :         WRITE_ONCE(si->inuse_pages, si->inuse_pages - nr_entries);
     740           0 :         if (si->flags & SWP_BLKDEV)
     741           0 :                 swap_slot_free_notify =
     742           0 :                         si->bdev->bd_disk->fops->swap_slot_free_notify;
     743             :         else
     744             :                 swap_slot_free_notify = NULL;
     745           0 :         while (offset <= end) {
     746           0 :                 arch_swap_invalidate_page(si->type, offset);
     747           0 :                 frontswap_invalidate_page(si->type, offset);
     748           0 :                 if (swap_slot_free_notify)
     749           0 :                         swap_slot_free_notify(si->bdev, offset);
     750           0 :                 offset++;
     751             :         }
     752           0 :         clear_shadow_from_swap_cache(si->type, begin, end);
     753           0 : }
     754             : 
     755           0 : static void set_cluster_next(struct swap_info_struct *si, unsigned long next)
     756             : {
     757             :         unsigned long prev;
     758             : 
     759           0 :         if (!(si->flags & SWP_SOLIDSTATE)) {
     760           0 :                 si->cluster_next = next;
     761           0 :                 return;
     762             :         }
     763             : 
     764           0 :         prev = this_cpu_read(*si->cluster_next_cpu);
     765             :         /*
     766             :          * Cross the swap address space size aligned trunk, choose
     767             :          * another trunk randomly to avoid lock contention on swap
     768             :          * address space if possible.
     769             :          */
     770           0 :         if ((prev >> SWAP_ADDRESS_SPACE_SHIFT) !=
     771           0 :             (next >> SWAP_ADDRESS_SPACE_SHIFT)) {
     772             :                 /* No free swap slots available */
     773           0 :                 if (si->highest_bit <= si->lowest_bit)
     774             :                         return;
     775           0 :                 next = get_random_u32_inclusive(si->lowest_bit, si->highest_bit);
     776           0 :                 next = ALIGN_DOWN(next, SWAP_ADDRESS_SPACE_PAGES);
     777           0 :                 next = max_t(unsigned int, next, si->lowest_bit);
     778             :         }
     779           0 :         this_cpu_write(*si->cluster_next_cpu, next);
     780             : }
     781             : 
     782             : static bool swap_offset_available_and_locked(struct swap_info_struct *si,
     783             :                                              unsigned long offset)
     784             : {
     785           0 :         if (data_race(!si->swap_map[offset])) {
     786           0 :                 spin_lock(&si->lock);
     787             :                 return true;
     788             :         }
     789             : 
     790           0 :         if (vm_swap_full() && READ_ONCE(si->swap_map[offset]) == SWAP_HAS_CACHE) {
     791           0 :                 spin_lock(&si->lock);
     792             :                 return true;
     793             :         }
     794             : 
     795             :         return false;
     796             : }
     797             : 
     798           0 : static int scan_swap_map_slots(struct swap_info_struct *si,
     799             :                                unsigned char usage, int nr,
     800             :                                swp_entry_t slots[])
     801             : {
     802             :         struct swap_cluster_info *ci;
     803             :         unsigned long offset;
     804             :         unsigned long scan_base;
     805           0 :         unsigned long last_in_cluster = 0;
     806           0 :         int latency_ration = LATENCY_LIMIT;
     807           0 :         int n_ret = 0;
     808           0 :         bool scanned_many = false;
     809             : 
     810             :         /*
     811             :          * We try to cluster swap pages by allocating them sequentially
     812             :          * in swap.  Once we've allocated SWAPFILE_CLUSTER pages this
     813             :          * way, however, we resort to first-free allocation, starting
     814             :          * a new cluster.  This prevents us from scattering swap pages
     815             :          * all over the entire swap partition, so that we reduce
     816             :          * overall disk seek times between swap pages.  -- sct
     817             :          * But we do now try to find an empty cluster.  -Andrea
     818             :          * And we let swap pages go all over an SSD partition.  Hugh
     819             :          */
     820             : 
     821           0 :         si->flags += SWP_SCANNING;
     822             :         /*
     823             :          * Use percpu scan base for SSD to reduce lock contention on
     824             :          * cluster and swap cache.  For HDD, sequential access is more
     825             :          * important.
     826             :          */
     827           0 :         if (si->flags & SWP_SOLIDSTATE)
     828           0 :                 scan_base = this_cpu_read(*si->cluster_next_cpu);
     829             :         else
     830           0 :                 scan_base = si->cluster_next;
     831           0 :         offset = scan_base;
     832             : 
     833             :         /* SSD algorithm */
     834           0 :         if (si->cluster_info) {
     835           0 :                 if (!scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
     836             :                         goto scan;
     837           0 :         } else if (unlikely(!si->cluster_nr--)) {
     838           0 :                 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
     839           0 :                         si->cluster_nr = SWAPFILE_CLUSTER - 1;
     840           0 :                         goto checks;
     841             :                 }
     842             : 
     843           0 :                 spin_unlock(&si->lock);
     844             : 
     845             :                 /*
     846             :                  * If seek is expensive, start searching for new cluster from
     847             :                  * start of partition, to minimize the span of allocated swap.
     848             :                  * If seek is cheap, that is the SWP_SOLIDSTATE si->cluster_info
     849             :                  * case, just handled by scan_swap_map_try_ssd_cluster() above.
     850             :                  */
     851           0 :                 scan_base = offset = si->lowest_bit;
     852           0 :                 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
     853             : 
     854             :                 /* Locate the first empty (unaligned) cluster */
     855           0 :                 for (; last_in_cluster <= si->highest_bit; offset++) {
     856           0 :                         if (si->swap_map[offset])
     857           0 :                                 last_in_cluster = offset + SWAPFILE_CLUSTER;
     858           0 :                         else if (offset == last_in_cluster) {
     859           0 :                                 spin_lock(&si->lock);
     860           0 :                                 offset -= SWAPFILE_CLUSTER - 1;
     861           0 :                                 si->cluster_next = offset;
     862           0 :                                 si->cluster_nr = SWAPFILE_CLUSTER - 1;
     863           0 :                                 goto checks;
     864             :                         }
     865           0 :                         if (unlikely(--latency_ration < 0)) {
     866           0 :                                 cond_resched();
     867           0 :                                 latency_ration = LATENCY_LIMIT;
     868             :                         }
     869             :                 }
     870             : 
     871           0 :                 offset = scan_base;
     872           0 :                 spin_lock(&si->lock);
     873           0 :                 si->cluster_nr = SWAPFILE_CLUSTER - 1;
     874             :         }
     875             : 
     876             : checks:
     877           0 :         if (si->cluster_info) {
     878           0 :                 while (scan_swap_map_ssd_cluster_conflict(si, offset)) {
     879             :                 /* take a break if we already got some slots */
     880           0 :                         if (n_ret)
     881             :                                 goto done;
     882           0 :                         if (!scan_swap_map_try_ssd_cluster(si, &offset,
     883             :                                                         &scan_base))
     884             :                                 goto scan;
     885             :                 }
     886             :         }
     887           0 :         if (!(si->flags & SWP_WRITEOK))
     888             :                 goto no_page;
     889           0 :         if (!si->highest_bit)
     890             :                 goto no_page;
     891           0 :         if (offset > si->highest_bit)
     892           0 :                 scan_base = offset = si->lowest_bit;
     893             : 
     894           0 :         ci = lock_cluster(si, offset);
     895             :         /* reuse swap entry of cache-only swap if not busy. */
     896           0 :         if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
     897             :                 int swap_was_freed;
     898           0 :                 unlock_cluster(ci);
     899           0 :                 spin_unlock(&si->lock);
     900           0 :                 swap_was_freed = __try_to_reclaim_swap(si, offset, TTRS_ANYWAY);
     901           0 :                 spin_lock(&si->lock);
     902             :                 /* entry was freed successfully, try to use this again */
     903           0 :                 if (swap_was_freed)
     904             :                         goto checks;
     905             :                 goto scan; /* check next one */
     906             :         }
     907             : 
     908           0 :         if (si->swap_map[offset]) {
     909           0 :                 unlock_cluster(ci);
     910           0 :                 if (!n_ret)
     911             :                         goto scan;
     912             :                 else
     913             :                         goto done;
     914             :         }
     915           0 :         WRITE_ONCE(si->swap_map[offset], usage);
     916           0 :         inc_cluster_info_page(si, si->cluster_info, offset);
     917           0 :         unlock_cluster(ci);
     918             : 
     919           0 :         swap_range_alloc(si, offset, 1);
     920           0 :         slots[n_ret++] = swp_entry(si->type, offset);
     921             : 
     922             :         /* got enough slots or reach max slots? */
     923           0 :         if ((n_ret == nr) || (offset >= si->highest_bit))
     924             :                 goto done;
     925             : 
     926             :         /* search for next available slot */
     927             : 
     928             :         /* time to take a break? */
     929           0 :         if (unlikely(--latency_ration < 0)) {
     930           0 :                 if (n_ret)
     931             :                         goto done;
     932           0 :                 spin_unlock(&si->lock);
     933           0 :                 cond_resched();
     934           0 :                 spin_lock(&si->lock);
     935           0 :                 latency_ration = LATENCY_LIMIT;
     936             :         }
     937             : 
     938             :         /* try to get more slots in cluster */
     939           0 :         if (si->cluster_info) {
     940           0 :                 if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
     941             :                         goto checks;
     942           0 :         } else if (si->cluster_nr && !si->swap_map[++offset]) {
     943             :                 /* non-ssd case, still more slots in cluster? */
     944           0 :                 --si->cluster_nr;
     945           0 :                 goto checks;
     946             :         }
     947             : 
     948             :         /*
     949             :          * Even if there's no free clusters available (fragmented),
     950             :          * try to scan a little more quickly with lock held unless we
     951             :          * have scanned too many slots already.
     952             :          */
     953           0 :         if (!scanned_many) {
     954             :                 unsigned long scan_limit;
     955             : 
     956           0 :                 if (offset < scan_base)
     957             :                         scan_limit = scan_base;
     958             :                 else
     959           0 :                         scan_limit = si->highest_bit;
     960           0 :                 for (; offset <= scan_limit && --latency_ration > 0;
     961           0 :                      offset++) {
     962           0 :                         if (!si->swap_map[offset])
     963             :                                 goto checks;
     964             :                 }
     965             :         }
     966             : 
     967             : done:
     968           0 :         set_cluster_next(si, offset + 1);
     969           0 :         si->flags -= SWP_SCANNING;
     970           0 :         return n_ret;
     971             : 
     972             : scan:
     973           0 :         spin_unlock(&si->lock);
     974           0 :         while (++offset <= READ_ONCE(si->highest_bit)) {
     975           0 :                 if (unlikely(--latency_ration < 0)) {
     976           0 :                         cond_resched();
     977           0 :                         latency_ration = LATENCY_LIMIT;
     978           0 :                         scanned_many = true;
     979             :                 }
     980           0 :                 if (swap_offset_available_and_locked(si, offset))
     981             :                         goto checks;
     982             :         }
     983           0 :         offset = si->lowest_bit;
     984           0 :         while (offset < scan_base) {
     985           0 :                 if (unlikely(--latency_ration < 0)) {
     986           0 :                         cond_resched();
     987           0 :                         latency_ration = LATENCY_LIMIT;
     988           0 :                         scanned_many = true;
     989             :                 }
     990           0 :                 if (swap_offset_available_and_locked(si, offset))
     991             :                         goto checks;
     992           0 :                 offset++;
     993             :         }
     994           0 :         spin_lock(&si->lock);
     995             : 
     996             : no_page:
     997           0 :         si->flags -= SWP_SCANNING;
     998           0 :         return n_ret;
     999             : }
    1000             : 
    1001             : static int swap_alloc_cluster(struct swap_info_struct *si, swp_entry_t *slot)
    1002             : {
    1003             :         unsigned long idx;
    1004             :         struct swap_cluster_info *ci;
    1005             :         unsigned long offset;
    1006             : 
    1007             :         /*
    1008             :          * Should not even be attempting cluster allocations when huge
    1009             :          * page swap is disabled.  Warn and fail the allocation.
    1010             :          */
    1011             :         if (!IS_ENABLED(CONFIG_THP_SWAP)) {
    1012             :                 VM_WARN_ON_ONCE(1);
    1013             :                 return 0;
    1014             :         }
    1015             : 
    1016             :         if (cluster_list_empty(&si->free_clusters))
    1017             :                 return 0;
    1018             : 
    1019             :         idx = cluster_list_first(&si->free_clusters);
    1020             :         offset = idx * SWAPFILE_CLUSTER;
    1021             :         ci = lock_cluster(si, offset);
    1022             :         alloc_cluster(si, idx);
    1023             :         cluster_set_count_flag(ci, SWAPFILE_CLUSTER, CLUSTER_FLAG_HUGE);
    1024             : 
    1025             :         memset(si->swap_map + offset, SWAP_HAS_CACHE, SWAPFILE_CLUSTER);
    1026             :         unlock_cluster(ci);
    1027             :         swap_range_alloc(si, offset, SWAPFILE_CLUSTER);
    1028             :         *slot = swp_entry(si->type, offset);
    1029             : 
    1030             :         return 1;
    1031             : }
    1032             : 
    1033             : static void swap_free_cluster(struct swap_info_struct *si, unsigned long idx)
    1034             : {
    1035             :         unsigned long offset = idx * SWAPFILE_CLUSTER;
    1036             :         struct swap_cluster_info *ci;
    1037             : 
    1038             :         ci = lock_cluster(si, offset);
    1039             :         memset(si->swap_map + offset, 0, SWAPFILE_CLUSTER);
    1040             :         cluster_set_count_flag(ci, 0, 0);
    1041             :         free_cluster(si, idx);
    1042             :         unlock_cluster(ci);
    1043             :         swap_range_free(si, offset, SWAPFILE_CLUSTER);
    1044             : }
    1045             : 
    1046           0 : int get_swap_pages(int n_goal, swp_entry_t swp_entries[], int entry_size)
    1047             : {
    1048           0 :         unsigned long size = swap_entry_size(entry_size);
    1049             :         struct swap_info_struct *si, *next;
    1050             :         long avail_pgs;
    1051           0 :         int n_ret = 0;
    1052             :         int node;
    1053             : 
    1054             :         /* Only single cluster request supported */
    1055           0 :         WARN_ON_ONCE(n_goal > 1 && size == SWAPFILE_CLUSTER);
    1056             : 
    1057           0 :         spin_lock(&swap_avail_lock);
    1058             : 
    1059           0 :         avail_pgs = atomic_long_read(&nr_swap_pages) / size;
    1060           0 :         if (avail_pgs <= 0) {
    1061             :                 spin_unlock(&swap_avail_lock);
    1062             :                 goto noswap;
    1063             :         }
    1064             : 
    1065           0 :         n_goal = min3((long)n_goal, (long)SWAP_BATCH, avail_pgs);
    1066             : 
    1067           0 :         atomic_long_sub(n_goal * size, &nr_swap_pages);
    1068             : 
    1069             : start_over:
    1070           0 :         node = numa_node_id();
    1071           0 :         plist_for_each_entry_safe(si, next, &swap_avail_heads[node], avail_lists[node]) {
    1072             :                 /* requeue si to after same-priority siblings */
    1073           0 :                 plist_requeue(&si->avail_lists[node], &swap_avail_heads[node]);
    1074           0 :                 spin_unlock(&swap_avail_lock);
    1075           0 :                 spin_lock(&si->lock);
    1076           0 :                 if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) {
    1077           0 :                         spin_lock(&swap_avail_lock);
    1078           0 :                         if (plist_node_empty(&si->avail_lists[node])) {
    1079           0 :                                 spin_unlock(&si->lock);
    1080             :                                 goto nextsi;
    1081             :                         }
    1082           0 :                         WARN(!si->highest_bit,
    1083             :                              "swap_info %d in list but !highest_bit\n",
    1084             :                              si->type);
    1085           0 :                         WARN(!(si->flags & SWP_WRITEOK),
    1086             :                              "swap_info %d in list but !SWP_WRITEOK\n",
    1087             :                              si->type);
    1088           0 :                         __del_from_avail_list(si);
    1089           0 :                         spin_unlock(&si->lock);
    1090             :                         goto nextsi;
    1091             :                 }
    1092             :                 if (size == SWAPFILE_CLUSTER) {
    1093             :                         if (si->flags & SWP_BLKDEV)
    1094             :                                 n_ret = swap_alloc_cluster(si, swp_entries);
    1095             :                 } else
    1096           0 :                         n_ret = scan_swap_map_slots(si, SWAP_HAS_CACHE,
    1097             :                                                     n_goal, swp_entries);
    1098           0 :                 spin_unlock(&si->lock);
    1099           0 :                 if (n_ret || size == SWAPFILE_CLUSTER)
    1100             :                         goto check_out;
    1101           0 :                 cond_resched();
    1102             : 
    1103             :                 spin_lock(&swap_avail_lock);
    1104             : nextsi:
    1105             :                 /*
    1106             :                  * if we got here, it's likely that si was almost full before,
    1107             :                  * and since scan_swap_map_slots() can drop the si->lock,
    1108             :                  * multiple callers probably all tried to get a page from the
    1109             :                  * same si and it filled up before we could get one; or, the si
    1110             :                  * filled up between us dropping swap_avail_lock and taking
    1111             :                  * si->lock. Since we dropped the swap_avail_lock, the
    1112             :                  * swap_avail_head list may have been modified; so if next is
    1113             :                  * still in the swap_avail_head list then try it, otherwise
    1114             :                  * start over if we have not gotten any slots.
    1115             :                  */
    1116           0 :                 if (plist_node_empty(&next->avail_lists[node]))
    1117             :                         goto start_over;
    1118             :         }
    1119             : 
    1120             :         spin_unlock(&swap_avail_lock);
    1121             : 
    1122             : check_out:
    1123           0 :         if (n_ret < n_goal)
    1124           0 :                 atomic_long_add((long)(n_goal - n_ret) * size,
    1125             :                                 &nr_swap_pages);
    1126             : noswap:
    1127           0 :         return n_ret;
    1128             : }
    1129             : 
    1130           0 : static struct swap_info_struct *_swap_info_get(swp_entry_t entry)
    1131             : {
    1132             :         struct swap_info_struct *p;
    1133             :         unsigned long offset;
    1134             : 
    1135           0 :         if (!entry.val)
    1136             :                 goto out;
    1137           0 :         p = swp_swap_info(entry);
    1138           0 :         if (!p)
    1139             :                 goto bad_nofile;
    1140           0 :         if (data_race(!(p->flags & SWP_USED)))
    1141             :                 goto bad_device;
    1142           0 :         offset = swp_offset(entry);
    1143           0 :         if (offset >= p->max)
    1144             :                 goto bad_offset;
    1145           0 :         if (data_race(!p->swap_map[swp_offset(entry)]))
    1146             :                 goto bad_free;
    1147             :         return p;
    1148             : 
    1149             : bad_free:
    1150           0 :         pr_err("%s: %s%08lx\n", __func__, Unused_offset, entry.val);
    1151           0 :         goto out;
    1152             : bad_offset:
    1153           0 :         pr_err("%s: %s%08lx\n", __func__, Bad_offset, entry.val);
    1154           0 :         goto out;
    1155             : bad_device:
    1156           0 :         pr_err("%s: %s%08lx\n", __func__, Unused_file, entry.val);
    1157           0 :         goto out;
    1158             : bad_nofile:
    1159           0 :         pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val);
    1160             : out:
    1161             :         return NULL;
    1162             : }
    1163             : 
    1164             : static struct swap_info_struct *swap_info_get_cont(swp_entry_t entry,
    1165             :                                         struct swap_info_struct *q)
    1166             : {
    1167             :         struct swap_info_struct *p;
    1168             : 
    1169           0 :         p = _swap_info_get(entry);
    1170             : 
    1171           0 :         if (p != q) {
    1172           0 :                 if (q != NULL)
    1173           0 :                         spin_unlock(&q->lock);
    1174           0 :                 if (p != NULL)
    1175           0 :                         spin_lock(&p->lock);
    1176             :         }
    1177             :         return p;
    1178             : }
    1179             : 
    1180           0 : static unsigned char __swap_entry_free_locked(struct swap_info_struct *p,
    1181             :                                               unsigned long offset,
    1182             :                                               unsigned char usage)
    1183             : {
    1184             :         unsigned char count;
    1185             :         unsigned char has_cache;
    1186             : 
    1187           0 :         count = p->swap_map[offset];
    1188             : 
    1189           0 :         has_cache = count & SWAP_HAS_CACHE;
    1190           0 :         count &= ~SWAP_HAS_CACHE;
    1191             : 
    1192           0 :         if (usage == SWAP_HAS_CACHE) {
    1193             :                 VM_BUG_ON(!has_cache);
    1194             :                 has_cache = 0;
    1195           0 :         } else if (count == SWAP_MAP_SHMEM) {
    1196             :                 /*
    1197             :                  * Or we could insist on shmem.c using a special
    1198             :                  * swap_shmem_free() and free_shmem_swap_and_cache()...
    1199             :                  */
    1200             :                 count = 0;
    1201           0 :         } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
    1202           0 :                 if (count == COUNT_CONTINUED) {
    1203           0 :                         if (swap_count_continued(p, offset, count))
    1204             :                                 count = SWAP_MAP_MAX | COUNT_CONTINUED;
    1205             :                         else
    1206           0 :                                 count = SWAP_MAP_MAX;
    1207             :                 } else
    1208           0 :                         count--;
    1209             :         }
    1210             : 
    1211           0 :         usage = count | has_cache;
    1212           0 :         if (usage)
    1213           0 :                 WRITE_ONCE(p->swap_map[offset], usage);
    1214             :         else
    1215           0 :                 WRITE_ONCE(p->swap_map[offset], SWAP_HAS_CACHE);
    1216             : 
    1217           0 :         return usage;
    1218             : }
    1219             : 
    1220             : /*
    1221             :  * Check whether swap entry is valid in the swap device.  If so,
    1222             :  * return pointer to swap_info_struct, and keep the swap entry valid
    1223             :  * via preventing the swap device from being swapoff, until
    1224             :  * put_swap_device() is called.  Otherwise return NULL.
    1225             :  *
    1226             :  * Notice that swapoff or swapoff+swapon can still happen before the
    1227             :  * percpu_ref_tryget_live() in get_swap_device() or after the
    1228             :  * percpu_ref_put() in put_swap_device() if there isn't any other way
    1229             :  * to prevent swapoff, such as page lock, page table lock, etc.  The
    1230             :  * caller must be prepared for that.  For example, the following
    1231             :  * situation is possible.
    1232             :  *
    1233             :  *   CPU1                               CPU2
    1234             :  *   do_swap_page()
    1235             :  *     ...                              swapoff+swapon
    1236             :  *     __read_swap_cache_async()
    1237             :  *       swapcache_prepare()
    1238             :  *         __swap_duplicate()
    1239             :  *           // check swap_map
    1240             :  *     // verify PTE not changed
    1241             :  *
    1242             :  * In __swap_duplicate(), the swap_map need to be checked before
    1243             :  * changing partly because the specified swap entry may be for another
    1244             :  * swap device which has been swapoff.  And in do_swap_page(), after
    1245             :  * the page is read from the swap device, the PTE is verified not
    1246             :  * changed with the page table locked to check whether the swap device
    1247             :  * has been swapoff or swapoff+swapon.
    1248             :  */
    1249           0 : struct swap_info_struct *get_swap_device(swp_entry_t entry)
    1250             : {
    1251             :         struct swap_info_struct *si;
    1252             :         unsigned long offset;
    1253             : 
    1254           0 :         if (!entry.val)
    1255             :                 goto out;
    1256           0 :         si = swp_swap_info(entry);
    1257           0 :         if (!si)
    1258             :                 goto bad_nofile;
    1259           0 :         if (!percpu_ref_tryget_live(&si->users))
    1260             :                 goto out;
    1261             :         /*
    1262             :          * Guarantee the si->users are checked before accessing other
    1263             :          * fields of swap_info_struct.
    1264             :          *
    1265             :          * Paired with the spin_unlock() after setup_swap_info() in
    1266             :          * enable_swap_info().
    1267             :          */
    1268           0 :         smp_rmb();
    1269           0 :         offset = swp_offset(entry);
    1270           0 :         if (offset >= si->max)
    1271             :                 goto put_out;
    1272             : 
    1273             :         return si;
    1274             : bad_nofile:
    1275           0 :         pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val);
    1276             : out:
    1277             :         return NULL;
    1278             : put_out:
    1279           0 :         pr_err("%s: %s%08lx\n", __func__, Bad_offset, entry.val);
    1280           0 :         percpu_ref_put(&si->users);
    1281           0 :         return NULL;
    1282             : }
    1283             : 
    1284           0 : static unsigned char __swap_entry_free(struct swap_info_struct *p,
    1285             :                                        swp_entry_t entry)
    1286             : {
    1287             :         struct swap_cluster_info *ci;
    1288           0 :         unsigned long offset = swp_offset(entry);
    1289             :         unsigned char usage;
    1290             : 
    1291           0 :         ci = lock_cluster_or_swap_info(p, offset);
    1292           0 :         usage = __swap_entry_free_locked(p, offset, 1);
    1293           0 :         unlock_cluster_or_swap_info(p, ci);
    1294           0 :         if (!usage)
    1295           0 :                 free_swap_slot(entry);
    1296             : 
    1297           0 :         return usage;
    1298             : }
    1299             : 
    1300           0 : static void swap_entry_free(struct swap_info_struct *p, swp_entry_t entry)
    1301             : {
    1302             :         struct swap_cluster_info *ci;
    1303           0 :         unsigned long offset = swp_offset(entry);
    1304             :         unsigned char count;
    1305             : 
    1306           0 :         ci = lock_cluster(p, offset);
    1307           0 :         count = p->swap_map[offset];
    1308             :         VM_BUG_ON(count != SWAP_HAS_CACHE);
    1309           0 :         p->swap_map[offset] = 0;
    1310           0 :         dec_cluster_info_page(p, p->cluster_info, offset);
    1311           0 :         unlock_cluster(ci);
    1312             : 
    1313           0 :         mem_cgroup_uncharge_swap(entry, 1);
    1314           0 :         swap_range_free(p, offset, 1);
    1315           0 : }
    1316             : 
    1317             : /*
    1318             :  * Caller has made sure that the swap device corresponding to entry
    1319             :  * is still around or has not been recycled.
    1320             :  */
    1321           0 : void swap_free(swp_entry_t entry)
    1322             : {
    1323             :         struct swap_info_struct *p;
    1324             : 
    1325           0 :         p = _swap_info_get(entry);
    1326           0 :         if (p)
    1327           0 :                 __swap_entry_free(p, entry);
    1328           0 : }
    1329             : 
    1330             : /*
    1331             :  * Called after dropping swapcache to decrease refcnt to swap entries.
    1332             :  */
    1333           0 : void put_swap_folio(struct folio *folio, swp_entry_t entry)
    1334             : {
    1335           0 :         unsigned long offset = swp_offset(entry);
    1336           0 :         unsigned long idx = offset / SWAPFILE_CLUSTER;
    1337             :         struct swap_cluster_info *ci;
    1338             :         struct swap_info_struct *si;
    1339             :         unsigned char *map;
    1340           0 :         unsigned int i, free_entries = 0;
    1341             :         unsigned char val;
    1342           0 :         int size = swap_entry_size(folio_nr_pages(folio));
    1343             : 
    1344           0 :         si = _swap_info_get(entry);
    1345           0 :         if (!si)
    1346             :                 return;
    1347             : 
    1348             :         ci = lock_cluster_or_swap_info(si, offset);
    1349             :         if (size == SWAPFILE_CLUSTER) {
    1350             :                 VM_BUG_ON(!cluster_is_huge(ci));
    1351             :                 map = si->swap_map + offset;
    1352             :                 for (i = 0; i < SWAPFILE_CLUSTER; i++) {
    1353             :                         val = map[i];
    1354             :                         VM_BUG_ON(!(val & SWAP_HAS_CACHE));
    1355             :                         if (val == SWAP_HAS_CACHE)
    1356             :                                 free_entries++;
    1357             :                 }
    1358             :                 cluster_clear_huge(ci);
    1359             :                 if (free_entries == SWAPFILE_CLUSTER) {
    1360             :                         unlock_cluster_or_swap_info(si, ci);
    1361             :                         spin_lock(&si->lock);
    1362             :                         mem_cgroup_uncharge_swap(entry, SWAPFILE_CLUSTER);
    1363             :                         swap_free_cluster(si, idx);
    1364             :                         spin_unlock(&si->lock);
    1365             :                         return;
    1366             :                 }
    1367             :         }
    1368           0 :         for (i = 0; i < size; i++, entry.val++) {
    1369           0 :                 if (!__swap_entry_free_locked(si, offset + i, SWAP_HAS_CACHE)) {
    1370           0 :                         unlock_cluster_or_swap_info(si, ci);
    1371           0 :                         free_swap_slot(entry);
    1372             :                         if (i == size - 1)
    1373             :                                 return;
    1374             :                         lock_cluster_or_swap_info(si, offset);
    1375             :                 }
    1376             :         }
    1377           0 :         unlock_cluster_or_swap_info(si, ci);
    1378             : }
    1379             : 
    1380             : #ifdef CONFIG_THP_SWAP
    1381             : int split_swap_cluster(swp_entry_t entry)
    1382             : {
    1383             :         struct swap_info_struct *si;
    1384             :         struct swap_cluster_info *ci;
    1385             :         unsigned long offset = swp_offset(entry);
    1386             : 
    1387             :         si = _swap_info_get(entry);
    1388             :         if (!si)
    1389             :                 return -EBUSY;
    1390             :         ci = lock_cluster(si, offset);
    1391             :         cluster_clear_huge(ci);
    1392             :         unlock_cluster(ci);
    1393             :         return 0;
    1394             : }
    1395             : #endif
    1396             : 
    1397           0 : static int swp_entry_cmp(const void *ent1, const void *ent2)
    1398             : {
    1399           0 :         const swp_entry_t *e1 = ent1, *e2 = ent2;
    1400             : 
    1401           0 :         return (int)swp_type(*e1) - (int)swp_type(*e2);
    1402             : }
    1403             : 
    1404           0 : void swapcache_free_entries(swp_entry_t *entries, int n)
    1405             : {
    1406             :         struct swap_info_struct *p, *prev;
    1407             :         int i;
    1408             : 
    1409           0 :         if (n <= 0)
    1410             :                 return;
    1411             : 
    1412           0 :         prev = NULL;
    1413           0 :         p = NULL;
    1414             : 
    1415             :         /*
    1416             :          * Sort swap entries by swap device, so each lock is only taken once.
    1417             :          * nr_swapfiles isn't absolutely correct, but the overhead of sort() is
    1418             :          * so low that it isn't necessary to optimize further.
    1419             :          */
    1420           0 :         if (nr_swapfiles > 1)
    1421           0 :                 sort(entries, n, sizeof(entries[0]), swp_entry_cmp, NULL);
    1422           0 :         for (i = 0; i < n; ++i) {
    1423           0 :                 p = swap_info_get_cont(entries[i], prev);
    1424           0 :                 if (p)
    1425           0 :                         swap_entry_free(p, entries[i]);
    1426           0 :                 prev = p;
    1427             :         }
    1428           0 :         if (p)
    1429           0 :                 spin_unlock(&p->lock);
    1430             : }
    1431             : 
    1432           0 : int __swap_count(swp_entry_t entry)
    1433             : {
    1434             :         struct swap_info_struct *si;
    1435           0 :         pgoff_t offset = swp_offset(entry);
    1436           0 :         int count = 0;
    1437             : 
    1438           0 :         si = get_swap_device(entry);
    1439           0 :         if (si) {
    1440           0 :                 count = swap_count(si->swap_map[offset]);
    1441             :                 put_swap_device(si);
    1442             :         }
    1443           0 :         return count;
    1444             : }
    1445             : 
    1446             : /*
    1447             :  * How many references to @entry are currently swapped out?
    1448             :  * This does not give an exact answer when swap count is continued,
    1449             :  * but does include the high COUNT_CONTINUED flag to allow for that.
    1450             :  */
    1451             : static int swap_swapcount(struct swap_info_struct *si, swp_entry_t entry)
    1452             : {
    1453           0 :         pgoff_t offset = swp_offset(entry);
    1454             :         struct swap_cluster_info *ci;
    1455             :         int count;
    1456             : 
    1457           0 :         ci = lock_cluster_or_swap_info(si, offset);
    1458           0 :         count = swap_count(si->swap_map[offset]);
    1459           0 :         unlock_cluster_or_swap_info(si, ci);
    1460             :         return count;
    1461             : }
    1462             : 
    1463             : /*
    1464             :  * How many references to @entry are currently swapped out?
    1465             :  * This does not give an exact answer when swap count is continued,
    1466             :  * but does include the high COUNT_CONTINUED flag to allow for that.
    1467             :  */
    1468           0 : int __swp_swapcount(swp_entry_t entry)
    1469             : {
    1470           0 :         int count = 0;
    1471             :         struct swap_info_struct *si;
    1472             : 
    1473           0 :         si = get_swap_device(entry);
    1474           0 :         if (si) {
    1475           0 :                 count = swap_swapcount(si, entry);
    1476             :                 put_swap_device(si);
    1477             :         }
    1478           0 :         return count;
    1479             : }
    1480             : 
    1481             : /*
    1482             :  * How many references to @entry are currently swapped out?
    1483             :  * This considers COUNT_CONTINUED so it returns exact answer.
    1484             :  */
    1485           0 : int swp_swapcount(swp_entry_t entry)
    1486             : {
    1487             :         int count, tmp_count, n;
    1488             :         struct swap_info_struct *p;
    1489             :         struct swap_cluster_info *ci;
    1490             :         struct page *page;
    1491             :         pgoff_t offset;
    1492             :         unsigned char *map;
    1493             : 
    1494           0 :         p = _swap_info_get(entry);
    1495           0 :         if (!p)
    1496             :                 return 0;
    1497             : 
    1498           0 :         offset = swp_offset(entry);
    1499             : 
    1500           0 :         ci = lock_cluster_or_swap_info(p, offset);
    1501             : 
    1502           0 :         count = swap_count(p->swap_map[offset]);
    1503           0 :         if (!(count & COUNT_CONTINUED))
    1504             :                 goto out;
    1505             : 
    1506           0 :         count &= ~COUNT_CONTINUED;
    1507           0 :         n = SWAP_MAP_MAX + 1;
    1508             : 
    1509           0 :         page = vmalloc_to_page(p->swap_map + offset);
    1510           0 :         offset &= ~PAGE_MASK;
    1511             :         VM_BUG_ON(page_private(page) != SWP_CONTINUED);
    1512             : 
    1513             :         do {
    1514           0 :                 page = list_next_entry(page, lru);
    1515           0 :                 map = kmap_atomic(page);
    1516           0 :                 tmp_count = map[offset];
    1517           0 :                 kunmap_atomic(map);
    1518             : 
    1519           0 :                 count += (tmp_count & ~COUNT_CONTINUED) * n;
    1520           0 :                 n *= (SWAP_CONT_MAX + 1);
    1521           0 :         } while (tmp_count & COUNT_CONTINUED);
    1522             : out:
    1523           0 :         unlock_cluster_or_swap_info(p, ci);
    1524             :         return count;
    1525             : }
    1526             : 
    1527             : static bool swap_page_trans_huge_swapped(struct swap_info_struct *si,
    1528             :                                          swp_entry_t entry)
    1529             : {
    1530             :         struct swap_cluster_info *ci;
    1531           0 :         unsigned char *map = si->swap_map;
    1532           0 :         unsigned long roffset = swp_offset(entry);
    1533           0 :         unsigned long offset = round_down(roffset, SWAPFILE_CLUSTER);
    1534             :         int i;
    1535           0 :         bool ret = false;
    1536             : 
    1537           0 :         ci = lock_cluster_or_swap_info(si, offset);
    1538             :         if (!ci || !cluster_is_huge(ci)) {
    1539           0 :                 if (swap_count(map[roffset]))
    1540           0 :                         ret = true;
    1541             :                 goto unlock_out;
    1542             :         }
    1543             :         for (i = 0; i < SWAPFILE_CLUSTER; i++) {
    1544             :                 if (swap_count(map[offset + i])) {
    1545             :                         ret = true;
    1546             :                         break;
    1547             :                 }
    1548             :         }
    1549             : unlock_out:
    1550           0 :         unlock_cluster_or_swap_info(si, ci);
    1551             :         return ret;
    1552             : }
    1553             : 
    1554           0 : static bool folio_swapped(struct folio *folio)
    1555             : {
    1556           0 :         swp_entry_t entry = folio_swap_entry(folio);
    1557           0 :         struct swap_info_struct *si = _swap_info_get(entry);
    1558             : 
    1559           0 :         if (!si)
    1560             :                 return false;
    1561             : 
    1562             :         if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!folio_test_large(folio)))
    1563           0 :                 return swap_swapcount(si, entry) != 0;
    1564             : 
    1565             :         return swap_page_trans_huge_swapped(si, entry);
    1566             : }
    1567             : 
    1568             : /**
    1569             :  * folio_free_swap() - Free the swap space used for this folio.
    1570             :  * @folio: The folio to remove.
    1571             :  *
    1572             :  * If swap is getting full, or if there are no more mappings of this folio,
    1573             :  * then call folio_free_swap to free its swap space.
    1574             :  *
    1575             :  * Return: true if we were able to release the swap space.
    1576             :  */
    1577           0 : bool folio_free_swap(struct folio *folio)
    1578             : {
    1579             :         VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
    1580             : 
    1581           0 :         if (!folio_test_swapcache(folio))
    1582             :                 return false;
    1583           0 :         if (folio_test_writeback(folio))
    1584             :                 return false;
    1585           0 :         if (folio_swapped(folio))
    1586             :                 return false;
    1587             : 
    1588             :         /*
    1589             :          * Once hibernation has begun to create its image of memory,
    1590             :          * there's a danger that one of the calls to folio_free_swap()
    1591             :          * - most probably a call from __try_to_reclaim_swap() while
    1592             :          * hibernation is allocating its own swap pages for the image,
    1593             :          * but conceivably even a call from memory reclaim - will free
    1594             :          * the swap from a folio which has already been recorded in the
    1595             :          * image as a clean swapcache folio, and then reuse its swap for
    1596             :          * another page of the image.  On waking from hibernation, the
    1597             :          * original folio might be freed under memory pressure, then
    1598             :          * later read back in from swap, now with the wrong data.
    1599             :          *
    1600             :          * Hibernation suspends storage while it is writing the image
    1601             :          * to disk so check that here.
    1602             :          */
    1603           0 :         if (pm_suspended_storage())
    1604             :                 return false;
    1605             : 
    1606           0 :         delete_from_swap_cache(folio);
    1607           0 :         folio_set_dirty(folio);
    1608           0 :         return true;
    1609             : }
    1610             : 
    1611             : /*
    1612             :  * Free the swap entry like above, but also try to
    1613             :  * free the page cache entry if it is the last user.
    1614             :  */
    1615           0 : int free_swap_and_cache(swp_entry_t entry)
    1616             : {
    1617             :         struct swap_info_struct *p;
    1618             :         unsigned char count;
    1619             : 
    1620           0 :         if (non_swap_entry(entry))
    1621             :                 return 1;
    1622             : 
    1623           0 :         p = _swap_info_get(entry);
    1624           0 :         if (p) {
    1625           0 :                 count = __swap_entry_free(p, entry);
    1626           0 :                 if (count == SWAP_HAS_CACHE &&
    1627           0 :                     !swap_page_trans_huge_swapped(p, entry))
    1628           0 :                         __try_to_reclaim_swap(p, swp_offset(entry),
    1629             :                                               TTRS_UNMAPPED | TTRS_FULL);
    1630             :         }
    1631           0 :         return p != NULL;
    1632             : }
    1633             : 
    1634             : #ifdef CONFIG_HIBERNATION
    1635             : 
    1636             : swp_entry_t get_swap_page_of_type(int type)
    1637             : {
    1638             :         struct swap_info_struct *si = swap_type_to_swap_info(type);
    1639             :         swp_entry_t entry = {0};
    1640             : 
    1641             :         if (!si)
    1642             :                 goto fail;
    1643             : 
    1644             :         /* This is called for allocating swap entry, not cache */
    1645             :         spin_lock(&si->lock);
    1646             :         if ((si->flags & SWP_WRITEOK) && scan_swap_map_slots(si, 1, 1, &entry))
    1647             :                 atomic_long_dec(&nr_swap_pages);
    1648             :         spin_unlock(&si->lock);
    1649             : fail:
    1650             :         return entry;
    1651             : }
    1652             : 
    1653             : /*
    1654             :  * Find the swap type that corresponds to given device (if any).
    1655             :  *
    1656             :  * @offset - number of the PAGE_SIZE-sized block of the device, starting
    1657             :  * from 0, in which the swap header is expected to be located.
    1658             :  *
    1659             :  * This is needed for the suspend to disk (aka swsusp).
    1660             :  */
    1661             : int swap_type_of(dev_t device, sector_t offset)
    1662             : {
    1663             :         int type;
    1664             : 
    1665             :         if (!device)
    1666             :                 return -1;
    1667             : 
    1668             :         spin_lock(&swap_lock);
    1669             :         for (type = 0; type < nr_swapfiles; type++) {
    1670             :                 struct swap_info_struct *sis = swap_info[type];
    1671             : 
    1672             :                 if (!(sis->flags & SWP_WRITEOK))
    1673             :                         continue;
    1674             : 
    1675             :                 if (device == sis->bdev->bd_dev) {
    1676             :                         struct swap_extent *se = first_se(sis);
    1677             : 
    1678             :                         if (se->start_block == offset) {
    1679             :                                 spin_unlock(&swap_lock);
    1680             :                                 return type;
    1681             :                         }
    1682             :                 }
    1683             :         }
    1684             :         spin_unlock(&swap_lock);
    1685             :         return -ENODEV;
    1686             : }
    1687             : 
    1688             : int find_first_swap(dev_t *device)
    1689             : {
    1690             :         int type;
    1691             : 
    1692             :         spin_lock(&swap_lock);
    1693             :         for (type = 0; type < nr_swapfiles; type++) {
    1694             :                 struct swap_info_struct *sis = swap_info[type];
    1695             : 
    1696             :                 if (!(sis->flags & SWP_WRITEOK))
    1697             :                         continue;
    1698             :                 *device = sis->bdev->bd_dev;
    1699             :                 spin_unlock(&swap_lock);
    1700             :                 return type;
    1701             :         }
    1702             :         spin_unlock(&swap_lock);
    1703             :         return -ENODEV;
    1704             : }
    1705             : 
    1706             : /*
    1707             :  * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
    1708             :  * corresponding to given index in swap_info (swap type).
    1709             :  */
    1710             : sector_t swapdev_block(int type, pgoff_t offset)
    1711             : {
    1712             :         struct swap_info_struct *si = swap_type_to_swap_info(type);
    1713             :         struct swap_extent *se;
    1714             : 
    1715             :         if (!si || !(si->flags & SWP_WRITEOK))
    1716             :                 return 0;
    1717             :         se = offset_to_swap_extent(si, offset);
    1718             :         return se->start_block + (offset - se->start_page);
    1719             : }
    1720             : 
    1721             : /*
    1722             :  * Return either the total number of swap pages of given type, or the number
    1723             :  * of free pages of that type (depending on @free)
    1724             :  *
    1725             :  * This is needed for software suspend
    1726             :  */
    1727             : unsigned int count_swap_pages(int type, int free)
    1728             : {
    1729             :         unsigned int n = 0;
    1730             : 
    1731             :         spin_lock(&swap_lock);
    1732             :         if ((unsigned int)type < nr_swapfiles) {
    1733             :                 struct swap_info_struct *sis = swap_info[type];
    1734             : 
    1735             :                 spin_lock(&sis->lock);
    1736             :                 if (sis->flags & SWP_WRITEOK) {
    1737             :                         n = sis->pages;
    1738             :                         if (free)
    1739             :                                 n -= sis->inuse_pages;
    1740             :                 }
    1741             :                 spin_unlock(&sis->lock);
    1742             :         }
    1743             :         spin_unlock(&swap_lock);
    1744             :         return n;
    1745             : }
    1746             : #endif /* CONFIG_HIBERNATION */
    1747             : 
    1748             : static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte)
    1749             : {
    1750           0 :         return pte_same(pte_swp_clear_flags(pte), swp_pte);
    1751             : }
    1752             : 
    1753             : /*
    1754             :  * No need to decide whether this PTE shares the swap entry with others,
    1755             :  * just let do_wp_page work it out if a write is requested later - to
    1756             :  * force COW, vm_page_prot omits write permission from any private vma.
    1757             :  */
    1758           0 : static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
    1759             :                 unsigned long addr, swp_entry_t entry, struct folio *folio)
    1760             : {
    1761           0 :         struct page *page = folio_file_page(folio, swp_offset(entry));
    1762             :         struct page *swapcache;
    1763             :         spinlock_t *ptl;
    1764             :         pte_t *pte, new_pte;
    1765           0 :         bool hwposioned = false;
    1766           0 :         int ret = 1;
    1767             : 
    1768           0 :         swapcache = page;
    1769           0 :         page = ksm_might_need_to_copy(page, vma, addr);
    1770           0 :         if (unlikely(!page))
    1771             :                 return -ENOMEM;
    1772           0 :         else if (unlikely(PTR_ERR(page) == -EHWPOISON))
    1773           0 :                 hwposioned = true;
    1774             : 
    1775           0 :         pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
    1776           0 :         if (unlikely(!pte_same_as_swp(*pte, swp_entry_to_pte(entry)))) {
    1777             :                 ret = 0;
    1778             :                 goto out;
    1779             :         }
    1780             : 
    1781           0 :         if (unlikely(hwposioned || !PageUptodate(page))) {
    1782             :                 swp_entry_t swp_entry;
    1783             : 
    1784           0 :                 dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
    1785           0 :                 if (hwposioned) {
    1786             :                         swp_entry = make_hwpoison_entry(swapcache);
    1787             :                         page = swapcache;
    1788             :                 } else {
    1789             :                         swp_entry = make_swapin_error_entry();
    1790             :                 }
    1791           0 :                 new_pte = swp_entry_to_pte(swp_entry);
    1792           0 :                 ret = 0;
    1793             :                 goto setpte;
    1794             :         }
    1795             : 
    1796             :         /* See do_swap_page() */
    1797           0 :         BUG_ON(!PageAnon(page) && PageMappedToDisk(page));
    1798           0 :         BUG_ON(PageAnon(page) && PageAnonExclusive(page));
    1799             : 
    1800           0 :         dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
    1801           0 :         inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
    1802           0 :         get_page(page);
    1803             :         if (page == swapcache) {
    1804           0 :                 rmap_t rmap_flags = RMAP_NONE;
    1805             : 
    1806             :                 /*
    1807             :                  * See do_swap_page(): PageWriteback() would be problematic.
    1808             :                  * However, we do a wait_on_page_writeback() just before this
    1809             :                  * call and have the page locked.
    1810             :                  */
    1811             :                 VM_BUG_ON_PAGE(PageWriteback(page), page);
    1812           0 :                 if (pte_swp_exclusive(*pte))
    1813           0 :                         rmap_flags |= RMAP_EXCLUSIVE;
    1814             : 
    1815           0 :                 page_add_anon_rmap(page, vma, addr, rmap_flags);
    1816             :         } else { /* ksm created a completely new copy */
    1817             :                 page_add_new_anon_rmap(page, vma, addr);
    1818             :                 lru_cache_add_inactive_or_unevictable(page, vma);
    1819             :         }
    1820           0 :         new_pte = pte_mkold(mk_pte(page, vma->vm_page_prot));
    1821           0 :         if (pte_swp_soft_dirty(*pte))
    1822             :                 new_pte = pte_mksoft_dirty(new_pte);
    1823             :         if (pte_swp_uffd_wp(*pte))
    1824             :                 new_pte = pte_mkuffd_wp(new_pte);
    1825             : setpte:
    1826           0 :         set_pte_at(vma->vm_mm, addr, pte, new_pte);
    1827           0 :         swap_free(entry);
    1828             : out:
    1829           0 :         pte_unmap_unlock(pte, ptl);
    1830             :         if (page != swapcache) {
    1831             :                 unlock_page(page);
    1832             :                 put_page(page);
    1833             :         }
    1834           0 :         return ret;
    1835             : }
    1836             : 
    1837           0 : static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
    1838             :                         unsigned long addr, unsigned long end,
    1839             :                         unsigned int type)
    1840             : {
    1841             :         swp_entry_t entry;
    1842             :         pte_t *pte;
    1843             :         struct swap_info_struct *si;
    1844           0 :         int ret = 0;
    1845             : 
    1846           0 :         si = swap_info[type];
    1847           0 :         pte = pte_offset_map(pmd, addr);
    1848             :         do {
    1849             :                 struct folio *folio;
    1850             :                 unsigned long offset;
    1851             :                 unsigned char swp_count;
    1852             : 
    1853           0 :                 if (!is_swap_pte(*pte))
    1854           0 :                         continue;
    1855             : 
    1856           0 :                 entry = pte_to_swp_entry(*pte);
    1857           0 :                 if (swp_type(entry) != type)
    1858           0 :                         continue;
    1859             : 
    1860           0 :                 offset = swp_offset(entry);
    1861             :                 pte_unmap(pte);
    1862           0 :                 folio = swap_cache_get_folio(entry, vma, addr);
    1863           0 :                 if (!folio) {
    1864             :                         struct page *page;
    1865           0 :                         struct vm_fault vmf = {
    1866             :                                 .vma = vma,
    1867             :                                 .address = addr,
    1868             :                                 .real_address = addr,
    1869             :                                 .pmd = pmd,
    1870             :                         };
    1871             : 
    1872           0 :                         page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
    1873             :                                                 &vmf);
    1874           0 :                         if (page)
    1875           0 :                                 folio = page_folio(page);
    1876             :                 }
    1877           0 :                 if (!folio) {
    1878           0 :                         swp_count = READ_ONCE(si->swap_map[offset]);
    1879           0 :                         if (swp_count == 0 || swp_count == SWAP_MAP_BAD)
    1880             :                                 goto try_next;
    1881             : 
    1882             :                         return -ENOMEM;
    1883             :                 }
    1884             : 
    1885           0 :                 folio_lock(folio);
    1886           0 :                 folio_wait_writeback(folio);
    1887           0 :                 ret = unuse_pte(vma, pmd, addr, entry, folio);
    1888           0 :                 if (ret < 0) {
    1889           0 :                         folio_unlock(folio);
    1890             :                         folio_put(folio);
    1891             :                         goto out;
    1892             :                 }
    1893             : 
    1894           0 :                 folio_free_swap(folio);
    1895           0 :                 folio_unlock(folio);
    1896             :                 folio_put(folio);
    1897             : try_next:
    1898           0 :                 pte = pte_offset_map(pmd, addr);
    1899           0 :         } while (pte++, addr += PAGE_SIZE, addr != end);
    1900             :         pte_unmap(pte - 1);
    1901             : 
    1902             :         ret = 0;
    1903             : out:
    1904             :         return ret;
    1905             : }
    1906             : 
    1907           0 : static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
    1908             :                                 unsigned long addr, unsigned long end,
    1909             :                                 unsigned int type)
    1910             : {
    1911             :         pmd_t *pmd;
    1912             :         unsigned long next;
    1913             :         int ret;
    1914             : 
    1915           0 :         pmd = pmd_offset(pud, addr);
    1916             :         do {
    1917           0 :                 cond_resched();
    1918           0 :                 next = pmd_addr_end(addr, end);
    1919           0 :                 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
    1920           0 :                         continue;
    1921           0 :                 ret = unuse_pte_range(vma, pmd, addr, next, type);
    1922           0 :                 if (ret)
    1923             :                         return ret;
    1924           0 :         } while (pmd++, addr = next, addr != end);
    1925             :         return 0;
    1926             : }
    1927             : 
    1928           0 : static inline int unuse_pud_range(struct vm_area_struct *vma, p4d_t *p4d,
    1929             :                                 unsigned long addr, unsigned long end,
    1930             :                                 unsigned int type)
    1931             : {
    1932             :         pud_t *pud;
    1933             :         unsigned long next;
    1934             :         int ret;
    1935             : 
    1936           0 :         pud = pud_offset(p4d, addr);
    1937             :         do {
    1938           0 :                 next = pud_addr_end(addr, end);
    1939           0 :                 if (pud_none_or_clear_bad(pud))
    1940           0 :                         continue;
    1941           0 :                 ret = unuse_pmd_range(vma, pud, addr, next, type);
    1942           0 :                 if (ret)
    1943             :                         return ret;
    1944           0 :         } while (pud++, addr = next, addr != end);
    1945           0 :         return 0;
    1946             : }
    1947             : 
    1948             : static inline int unuse_p4d_range(struct vm_area_struct *vma, pgd_t *pgd,
    1949             :                                 unsigned long addr, unsigned long end,
    1950             :                                 unsigned int type)
    1951             : {
    1952             :         p4d_t *p4d;
    1953             :         unsigned long next;
    1954             :         int ret;
    1955             : 
    1956           0 :         p4d = p4d_offset(pgd, addr);
    1957             :         do {
    1958           0 :                 next = p4d_addr_end(addr, end);
    1959           0 :                 if (p4d_none_or_clear_bad(p4d))
    1960             :                         continue;
    1961           0 :                 ret = unuse_pud_range(vma, p4d, addr, next, type);
    1962           0 :                 if (ret)
    1963             :                         return ret;
    1964           0 :         } while (p4d++, addr = next, addr != end);
    1965             :         return 0;
    1966             : }
    1967             : 
    1968           0 : static int unuse_vma(struct vm_area_struct *vma, unsigned int type)
    1969             : {
    1970             :         pgd_t *pgd;
    1971             :         unsigned long addr, end, next;
    1972             :         int ret;
    1973             : 
    1974           0 :         addr = vma->vm_start;
    1975           0 :         end = vma->vm_end;
    1976             : 
    1977           0 :         pgd = pgd_offset(vma->vm_mm, addr);
    1978             :         do {
    1979           0 :                 next = pgd_addr_end(addr, end);
    1980           0 :                 if (pgd_none_or_clear_bad(pgd))
    1981             :                         continue;
    1982           0 :                 ret = unuse_p4d_range(vma, pgd, addr, next, type);
    1983           0 :                 if (ret)
    1984             :                         return ret;
    1985           0 :         } while (pgd++, addr = next, addr != end);
    1986             :         return 0;
    1987             : }
    1988             : 
    1989           0 : static int unuse_mm(struct mm_struct *mm, unsigned int type)
    1990             : {
    1991             :         struct vm_area_struct *vma;
    1992           0 :         int ret = 0;
    1993           0 :         VMA_ITERATOR(vmi, mm, 0);
    1994             : 
    1995             :         mmap_read_lock(mm);
    1996           0 :         for_each_vma(vmi, vma) {
    1997           0 :                 if (vma->anon_vma) {
    1998           0 :                         ret = unuse_vma(vma, type);
    1999           0 :                         if (ret)
    2000             :                                 break;
    2001             :                 }
    2002             : 
    2003           0 :                 cond_resched();
    2004             :         }
    2005           0 :         mmap_read_unlock(mm);
    2006           0 :         return ret;
    2007             : }
    2008             : 
    2009             : /*
    2010             :  * Scan swap_map from current position to next entry still in use.
    2011             :  * Return 0 if there are no inuse entries after prev till end of
    2012             :  * the map.
    2013             :  */
    2014           0 : static unsigned int find_next_to_unuse(struct swap_info_struct *si,
    2015             :                                         unsigned int prev)
    2016             : {
    2017             :         unsigned int i;
    2018             :         unsigned char count;
    2019             : 
    2020             :         /*
    2021             :          * No need for swap_lock here: we're just looking
    2022             :          * for whether an entry is in use, not modifying it; false
    2023             :          * hits are okay, and sys_swapoff() has already prevented new
    2024             :          * allocations from this area (while holding swap_lock).
    2025             :          */
    2026           0 :         for (i = prev + 1; i < si->max; i++) {
    2027           0 :                 count = READ_ONCE(si->swap_map[i]);
    2028           0 :                 if (count && swap_count(count) != SWAP_MAP_BAD)
    2029             :                         break;
    2030           0 :                 if ((i % LATENCY_LIMIT) == 0)
    2031           0 :                         cond_resched();
    2032             :         }
    2033             : 
    2034           0 :         if (i == si->max)
    2035           0 :                 i = 0;
    2036             : 
    2037           0 :         return i;
    2038             : }
    2039             : 
    2040           0 : static int try_to_unuse(unsigned int type)
    2041             : {
    2042             :         struct mm_struct *prev_mm;
    2043             :         struct mm_struct *mm;
    2044             :         struct list_head *p;
    2045           0 :         int retval = 0;
    2046           0 :         struct swap_info_struct *si = swap_info[type];
    2047             :         struct folio *folio;
    2048             :         swp_entry_t entry;
    2049             :         unsigned int i;
    2050             : 
    2051           0 :         if (!READ_ONCE(si->inuse_pages))
    2052             :                 return 0;
    2053             : 
    2054             : retry:
    2055           0 :         retval = shmem_unuse(type);
    2056           0 :         if (retval)
    2057             :                 return retval;
    2058             : 
    2059           0 :         prev_mm = &init_mm;
    2060           0 :         mmget(prev_mm);
    2061             : 
    2062           0 :         spin_lock(&mmlist_lock);
    2063           0 :         p = &init_mm.mmlist;
    2064           0 :         while (READ_ONCE(si->inuse_pages) &&
    2065           0 :                !signal_pending(current) &&
    2066           0 :                (p = p->next) != &init_mm.mmlist) {
    2067             : 
    2068           0 :                 mm = list_entry(p, struct mm_struct, mmlist);
    2069           0 :                 if (!mmget_not_zero(mm))
    2070           0 :                         continue;
    2071           0 :                 spin_unlock(&mmlist_lock);
    2072           0 :                 mmput(prev_mm);
    2073           0 :                 prev_mm = mm;
    2074           0 :                 retval = unuse_mm(mm, type);
    2075           0 :                 if (retval) {
    2076           0 :                         mmput(prev_mm);
    2077           0 :                         return retval;
    2078             :                 }
    2079             : 
    2080             :                 /*
    2081             :                  * Make sure that we aren't completely killing
    2082             :                  * interactive performance.
    2083             :                  */
    2084           0 :                 cond_resched();
    2085             :                 spin_lock(&mmlist_lock);
    2086             :         }
    2087           0 :         spin_unlock(&mmlist_lock);
    2088             : 
    2089           0 :         mmput(prev_mm);
    2090             : 
    2091           0 :         i = 0;
    2092           0 :         while (READ_ONCE(si->inuse_pages) &&
    2093           0 :                !signal_pending(current) &&
    2094             :                (i = find_next_to_unuse(si, i)) != 0) {
    2095             : 
    2096           0 :                 entry = swp_entry(type, i);
    2097           0 :                 folio = filemap_get_folio(swap_address_space(entry), i);
    2098           0 :                 if (!folio)
    2099           0 :                         continue;
    2100             : 
    2101             :                 /*
    2102             :                  * It is conceivable that a racing task removed this folio from
    2103             :                  * swap cache just before we acquired the page lock. The folio
    2104             :                  * might even be back in swap cache on another swap area. But
    2105             :                  * that is okay, folio_free_swap() only removes stale folios.
    2106             :                  */
    2107           0 :                 folio_lock(folio);
    2108           0 :                 folio_wait_writeback(folio);
    2109           0 :                 folio_free_swap(folio);
    2110           0 :                 folio_unlock(folio);
    2111             :                 folio_put(folio);
    2112             :         }
    2113             : 
    2114             :         /*
    2115             :          * Lets check again to see if there are still swap entries in the map.
    2116             :          * If yes, we would need to do retry the unuse logic again.
    2117             :          * Under global memory pressure, swap entries can be reinserted back
    2118             :          * into process space after the mmlist loop above passes over them.
    2119             :          *
    2120             :          * Limit the number of retries? No: when mmget_not_zero()
    2121             :          * above fails, that mm is likely to be freeing swap from
    2122             :          * exit_mmap(), which proceeds at its own independent pace;
    2123             :          * and even shmem_writepage() could have been preempted after
    2124             :          * folio_alloc_swap(), temporarily hiding that swap.  It's easy
    2125             :          * and robust (though cpu-intensive) just to keep retrying.
    2126             :          */
    2127           0 :         if (READ_ONCE(si->inuse_pages)) {
    2128           0 :                 if (!signal_pending(current))
    2129             :                         goto retry;
    2130             :                 return -EINTR;
    2131             :         }
    2132             : 
    2133             :         return 0;
    2134             : }
    2135             : 
    2136             : /*
    2137             :  * After a successful try_to_unuse, if no swap is now in use, we know
    2138             :  * we can empty the mmlist.  swap_lock must be held on entry and exit.
    2139             :  * Note that mmlist_lock nests inside swap_lock, and an mm must be
    2140             :  * added to the mmlist just after page_duplicate - before would be racy.
    2141             :  */
    2142           0 : static void drain_mmlist(void)
    2143             : {
    2144             :         struct list_head *p, *next;
    2145             :         unsigned int type;
    2146             : 
    2147           0 :         for (type = 0; type < nr_swapfiles; type++)
    2148           0 :                 if (swap_info[type]->inuse_pages)
    2149             :                         return;
    2150           0 :         spin_lock(&mmlist_lock);
    2151           0 :         list_for_each_safe(p, next, &init_mm.mmlist)
    2152           0 :                 list_del_init(p);
    2153             :         spin_unlock(&mmlist_lock);
    2154             : }
    2155             : 
    2156             : /*
    2157             :  * Free all of a swapdev's extent information
    2158             :  */
    2159           0 : static void destroy_swap_extents(struct swap_info_struct *sis)
    2160             : {
    2161           0 :         while (!RB_EMPTY_ROOT(&sis->swap_extent_root)) {
    2162           0 :                 struct rb_node *rb = sis->swap_extent_root.rb_node;
    2163           0 :                 struct swap_extent *se = rb_entry(rb, struct swap_extent, rb_node);
    2164             : 
    2165           0 :                 rb_erase(rb, &sis->swap_extent_root);
    2166           0 :                 kfree(se);
    2167             :         }
    2168             : 
    2169           0 :         if (sis->flags & SWP_ACTIVATED) {
    2170           0 :                 struct file *swap_file = sis->swap_file;
    2171           0 :                 struct address_space *mapping = swap_file->f_mapping;
    2172             : 
    2173           0 :                 sis->flags &= ~SWP_ACTIVATED;
    2174           0 :                 if (mapping->a_ops->swap_deactivate)
    2175           0 :                         mapping->a_ops->swap_deactivate(swap_file);
    2176             :         }
    2177           0 : }
    2178             : 
    2179             : /*
    2180             :  * Add a block range (and the corresponding page range) into this swapdev's
    2181             :  * extent tree.
    2182             :  *
    2183             :  * This function rather assumes that it is called in ascending page order.
    2184             :  */
    2185             : int
    2186           0 : add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
    2187             :                 unsigned long nr_pages, sector_t start_block)
    2188             : {
    2189           0 :         struct rb_node **link = &sis->swap_extent_root.rb_node, *parent = NULL;
    2190             :         struct swap_extent *se;
    2191             :         struct swap_extent *new_se;
    2192             : 
    2193             :         /*
    2194             :          * place the new node at the right most since the
    2195             :          * function is called in ascending page order.
    2196             :          */
    2197           0 :         while (*link) {
    2198           0 :                 parent = *link;
    2199           0 :                 link = &parent->rb_right;
    2200             :         }
    2201             : 
    2202           0 :         if (parent) {
    2203           0 :                 se = rb_entry(parent, struct swap_extent, rb_node);
    2204           0 :                 BUG_ON(se->start_page + se->nr_pages != start_page);
    2205           0 :                 if (se->start_block + se->nr_pages == start_block) {
    2206             :                         /* Merge it */
    2207           0 :                         se->nr_pages += nr_pages;
    2208           0 :                         return 0;
    2209             :                 }
    2210             :         }
    2211             : 
    2212             :         /* No merge, insert a new extent. */
    2213           0 :         new_se = kmalloc(sizeof(*se), GFP_KERNEL);
    2214           0 :         if (new_se == NULL)
    2215             :                 return -ENOMEM;
    2216           0 :         new_se->start_page = start_page;
    2217           0 :         new_se->nr_pages = nr_pages;
    2218           0 :         new_se->start_block = start_block;
    2219             : 
    2220           0 :         rb_link_node(&new_se->rb_node, parent, link);
    2221           0 :         rb_insert_color(&new_se->rb_node, &sis->swap_extent_root);
    2222           0 :         return 1;
    2223             : }
    2224             : EXPORT_SYMBOL_GPL(add_swap_extent);
    2225             : 
    2226             : /*
    2227             :  * A `swap extent' is a simple thing which maps a contiguous range of pages
    2228             :  * onto a contiguous range of disk blocks.  A rbtree of swap extents is
    2229             :  * built at swapon time and is then used at swap_writepage/swap_readpage
    2230             :  * time for locating where on disk a page belongs.
    2231             :  *
    2232             :  * If the swapfile is an S_ISBLK block device, a single extent is installed.
    2233             :  * This is done so that the main operating code can treat S_ISBLK and S_ISREG
    2234             :  * swap files identically.
    2235             :  *
    2236             :  * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
    2237             :  * extent rbtree operates in PAGE_SIZE disk blocks.  Both S_ISREG and S_ISBLK
    2238             :  * swapfiles are handled *identically* after swapon time.
    2239             :  *
    2240             :  * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
    2241             :  * and will parse them into a rbtree, in PAGE_SIZE chunks.  If some stray
    2242             :  * blocks are found which do not fall within the PAGE_SIZE alignment
    2243             :  * requirements, they are simply tossed out - we will never use those blocks
    2244             :  * for swapping.
    2245             :  *
    2246             :  * For all swap devices we set S_SWAPFILE across the life of the swapon.  This
    2247             :  * prevents users from writing to the swap device, which will corrupt memory.
    2248             :  *
    2249             :  * The amount of disk space which a single swap extent represents varies.
    2250             :  * Typically it is in the 1-4 megabyte range.  So we can have hundreds of
    2251             :  * extents in the rbtree. - akpm.
    2252             :  */
    2253           0 : static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
    2254             : {
    2255           0 :         struct file *swap_file = sis->swap_file;
    2256           0 :         struct address_space *mapping = swap_file->f_mapping;
    2257           0 :         struct inode *inode = mapping->host;
    2258             :         int ret;
    2259             : 
    2260           0 :         if (S_ISBLK(inode->i_mode)) {
    2261           0 :                 ret = add_swap_extent(sis, 0, sis->max, 0);
    2262           0 :                 *span = sis->pages;
    2263           0 :                 return ret;
    2264             :         }
    2265             : 
    2266           0 :         if (mapping->a_ops->swap_activate) {
    2267           0 :                 ret = mapping->a_ops->swap_activate(sis, swap_file, span);
    2268           0 :                 if (ret < 0)
    2269             :                         return ret;
    2270           0 :                 sis->flags |= SWP_ACTIVATED;
    2271           0 :                 if ((sis->flags & SWP_FS_OPS) &&
    2272           0 :                     sio_pool_init() != 0) {
    2273           0 :                         destroy_swap_extents(sis);
    2274           0 :                         return -ENOMEM;
    2275             :                 }
    2276             :                 return ret;
    2277             :         }
    2278             : 
    2279           0 :         return generic_swapfile_activate(sis, swap_file, span);
    2280             : }
    2281             : 
    2282             : static int swap_node(struct swap_info_struct *p)
    2283             : {
    2284             :         struct block_device *bdev;
    2285             : 
    2286           0 :         if (p->bdev)
    2287             :                 bdev = p->bdev;
    2288             :         else
    2289           0 :                 bdev = p->swap_file->f_inode->i_sb->s_bdev;
    2290             : 
    2291           0 :         return bdev ? bdev->bd_disk->node_id : NUMA_NO_NODE;
    2292             : }
    2293             : 
    2294           0 : static void setup_swap_info(struct swap_info_struct *p, int prio,
    2295             :                             unsigned char *swap_map,
    2296             :                             struct swap_cluster_info *cluster_info)
    2297             : {
    2298             :         int i;
    2299             : 
    2300           0 :         if (prio >= 0)
    2301           0 :                 p->prio = prio;
    2302             :         else
    2303           0 :                 p->prio = --least_priority;
    2304             :         /*
    2305             :          * the plist prio is negated because plist ordering is
    2306             :          * low-to-high, while swap ordering is high-to-low
    2307             :          */
    2308           0 :         p->list.prio = -p->prio;
    2309           0 :         for_each_node(i) {
    2310           0 :                 if (p->prio >= 0)
    2311           0 :                         p->avail_lists[i].prio = -p->prio;
    2312             :                 else {
    2313           0 :                         if (swap_node(p) == i)
    2314           0 :                                 p->avail_lists[i].prio = 1;
    2315             :                         else
    2316           0 :                                 p->avail_lists[i].prio = -p->prio;
    2317             :                 }
    2318             :         }
    2319           0 :         p->swap_map = swap_map;
    2320           0 :         p->cluster_info = cluster_info;
    2321           0 : }
    2322             : 
    2323           0 : static void _enable_swap_info(struct swap_info_struct *p)
    2324             : {
    2325           0 :         p->flags |= SWP_WRITEOK;
    2326           0 :         atomic_long_add(p->pages, &nr_swap_pages);
    2327           0 :         total_swap_pages += p->pages;
    2328             : 
    2329             :         assert_spin_locked(&swap_lock);
    2330             :         /*
    2331             :          * both lists are plists, and thus priority ordered.
    2332             :          * swap_active_head needs to be priority ordered for swapoff(),
    2333             :          * which on removal of any swap_info_struct with an auto-assigned
    2334             :          * (i.e. negative) priority increments the auto-assigned priority
    2335             :          * of any lower-priority swap_info_structs.
    2336             :          * swap_avail_head needs to be priority ordered for folio_alloc_swap(),
    2337             :          * which allocates swap pages from the highest available priority
    2338             :          * swap_info_struct.
    2339             :          */
    2340           0 :         plist_add(&p->list, &swap_active_head);
    2341           0 :         add_to_avail_list(p);
    2342           0 : }
    2343             : 
    2344           0 : static void enable_swap_info(struct swap_info_struct *p, int prio,
    2345             :                                 unsigned char *swap_map,
    2346             :                                 struct swap_cluster_info *cluster_info,
    2347             :                                 unsigned long *frontswap_map)
    2348             : {
    2349             :         if (IS_ENABLED(CONFIG_FRONTSWAP))
    2350             :                 frontswap_init(p->type, frontswap_map);
    2351           0 :         spin_lock(&swap_lock);
    2352           0 :         spin_lock(&p->lock);
    2353           0 :         setup_swap_info(p, prio, swap_map, cluster_info);
    2354           0 :         spin_unlock(&p->lock);
    2355           0 :         spin_unlock(&swap_lock);
    2356             :         /*
    2357             :          * Finished initializing swap device, now it's safe to reference it.
    2358             :          */
    2359           0 :         percpu_ref_resurrect(&p->users);
    2360           0 :         spin_lock(&swap_lock);
    2361           0 :         spin_lock(&p->lock);
    2362           0 :         _enable_swap_info(p);
    2363           0 :         spin_unlock(&p->lock);
    2364           0 :         spin_unlock(&swap_lock);
    2365           0 : }
    2366             : 
    2367           0 : static void reinsert_swap_info(struct swap_info_struct *p)
    2368             : {
    2369           0 :         spin_lock(&swap_lock);
    2370           0 :         spin_lock(&p->lock);
    2371           0 :         setup_swap_info(p, p->prio, p->swap_map, p->cluster_info);
    2372           0 :         _enable_swap_info(p);
    2373           0 :         spin_unlock(&p->lock);
    2374           0 :         spin_unlock(&swap_lock);
    2375           0 : }
    2376             : 
    2377           0 : bool has_usable_swap(void)
    2378             : {
    2379           0 :         bool ret = true;
    2380             : 
    2381           0 :         spin_lock(&swap_lock);
    2382           0 :         if (plist_head_empty(&swap_active_head))
    2383           0 :                 ret = false;
    2384           0 :         spin_unlock(&swap_lock);
    2385           0 :         return ret;
    2386             : }
    2387             : 
    2388           0 : SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
    2389             : {
    2390           0 :         struct swap_info_struct *p = NULL;
    2391             :         unsigned char *swap_map;
    2392             :         struct swap_cluster_info *cluster_info;
    2393             :         unsigned long *frontswap_map;
    2394             :         struct file *swap_file, *victim;
    2395             :         struct address_space *mapping;
    2396             :         struct inode *inode;
    2397             :         struct filename *pathname;
    2398           0 :         int err, found = 0;
    2399             :         unsigned int old_block_size;
    2400             : 
    2401           0 :         if (!capable(CAP_SYS_ADMIN))
    2402             :                 return -EPERM;
    2403             : 
    2404           0 :         BUG_ON(!current->mm);
    2405             : 
    2406           0 :         pathname = getname(specialfile);
    2407           0 :         if (IS_ERR(pathname))
    2408           0 :                 return PTR_ERR(pathname);
    2409             : 
    2410           0 :         victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0);
    2411           0 :         err = PTR_ERR(victim);
    2412           0 :         if (IS_ERR(victim))
    2413             :                 goto out;
    2414             : 
    2415           0 :         mapping = victim->f_mapping;
    2416           0 :         spin_lock(&swap_lock);
    2417           0 :         plist_for_each_entry(p, &swap_active_head, list) {
    2418           0 :                 if (p->flags & SWP_WRITEOK) {
    2419           0 :                         if (p->swap_file->f_mapping == mapping) {
    2420             :                                 found = 1;
    2421             :                                 break;
    2422             :                         }
    2423             :                 }
    2424             :         }
    2425           0 :         if (!found) {
    2426           0 :                 err = -EINVAL;
    2427             :                 spin_unlock(&swap_lock);
    2428             :                 goto out_dput;
    2429             :         }
    2430           0 :         if (!security_vm_enough_memory_mm(current->mm, p->pages))
    2431           0 :                 vm_unacct_memory(p->pages);
    2432             :         else {
    2433           0 :                 err = -ENOMEM;
    2434             :                 spin_unlock(&swap_lock);
    2435             :                 goto out_dput;
    2436             :         }
    2437           0 :         del_from_avail_list(p);
    2438           0 :         spin_lock(&p->lock);
    2439           0 :         if (p->prio < 0) {
    2440           0 :                 struct swap_info_struct *si = p;
    2441             :                 int nid;
    2442             : 
    2443           0 :                 plist_for_each_entry_continue(si, &swap_active_head, list) {
    2444           0 :                         si->prio++;
    2445           0 :                         si->list.prio--;
    2446           0 :                         for_each_node(nid) {
    2447           0 :                                 if (si->avail_lists[nid].prio != 1)
    2448           0 :                                         si->avail_lists[nid].prio--;
    2449             :                         }
    2450             :                 }
    2451           0 :                 least_priority++;
    2452             :         }
    2453           0 :         plist_del(&p->list, &swap_active_head);
    2454           0 :         atomic_long_sub(p->pages, &nr_swap_pages);
    2455           0 :         total_swap_pages -= p->pages;
    2456           0 :         p->flags &= ~SWP_WRITEOK;
    2457           0 :         spin_unlock(&p->lock);
    2458           0 :         spin_unlock(&swap_lock);
    2459             : 
    2460           0 :         disable_swap_slots_cache_lock();
    2461             : 
    2462           0 :         set_current_oom_origin();
    2463           0 :         err = try_to_unuse(p->type);
    2464           0 :         clear_current_oom_origin();
    2465             : 
    2466           0 :         if (err) {
    2467             :                 /* re-insert swap space back into swap_list */
    2468           0 :                 reinsert_swap_info(p);
    2469           0 :                 reenable_swap_slots_cache_unlock();
    2470           0 :                 goto out_dput;
    2471             :         }
    2472             : 
    2473           0 :         reenable_swap_slots_cache_unlock();
    2474             : 
    2475             :         /*
    2476             :          * Wait for swap operations protected by get/put_swap_device()
    2477             :          * to complete.
    2478             :          *
    2479             :          * We need synchronize_rcu() here to protect the accessing to
    2480             :          * the swap cache data structure.
    2481             :          */
    2482           0 :         percpu_ref_kill(&p->users);
    2483           0 :         synchronize_rcu();
    2484           0 :         wait_for_completion(&p->comp);
    2485             : 
    2486           0 :         flush_work(&p->discard_work);
    2487             : 
    2488           0 :         destroy_swap_extents(p);
    2489           0 :         if (p->flags & SWP_CONTINUED)
    2490           0 :                 free_swap_count_continuations(p);
    2491             : 
    2492           0 :         if (!p->bdev || !bdev_nonrot(p->bdev))
    2493             :                 atomic_dec(&nr_rotate_swap);
    2494             : 
    2495           0 :         mutex_lock(&swapon_mutex);
    2496           0 :         spin_lock(&swap_lock);
    2497           0 :         spin_lock(&p->lock);
    2498           0 :         drain_mmlist();
    2499             : 
    2500             :         /* wait for anyone still in scan_swap_map_slots */
    2501           0 :         p->highest_bit = 0;          /* cuts scans short */
    2502           0 :         while (p->flags >= SWP_SCANNING) {
    2503           0 :                 spin_unlock(&p->lock);
    2504           0 :                 spin_unlock(&swap_lock);
    2505           0 :                 schedule_timeout_uninterruptible(1);
    2506           0 :                 spin_lock(&swap_lock);
    2507           0 :                 spin_lock(&p->lock);
    2508             :         }
    2509             : 
    2510           0 :         swap_file = p->swap_file;
    2511           0 :         old_block_size = p->old_block_size;
    2512           0 :         p->swap_file = NULL;
    2513           0 :         p->max = 0;
    2514           0 :         swap_map = p->swap_map;
    2515           0 :         p->swap_map = NULL;
    2516           0 :         cluster_info = p->cluster_info;
    2517           0 :         p->cluster_info = NULL;
    2518           0 :         frontswap_map = frontswap_map_get(p);
    2519           0 :         spin_unlock(&p->lock);
    2520           0 :         spin_unlock(&swap_lock);
    2521           0 :         arch_swap_invalidate_area(p->type);
    2522           0 :         frontswap_invalidate_area(p->type);
    2523           0 :         frontswap_map_set(p, NULL);
    2524           0 :         mutex_unlock(&swapon_mutex);
    2525           0 :         free_percpu(p->percpu_cluster);
    2526           0 :         p->percpu_cluster = NULL;
    2527           0 :         free_percpu(p->cluster_next_cpu);
    2528           0 :         p->cluster_next_cpu = NULL;
    2529           0 :         vfree(swap_map);
    2530           0 :         kvfree(cluster_info);
    2531           0 :         kvfree(frontswap_map);
    2532             :         /* Destroy swap account information */
    2533           0 :         swap_cgroup_swapoff(p->type);
    2534           0 :         exit_swap_address_space(p->type);
    2535             : 
    2536           0 :         inode = mapping->host;
    2537           0 :         if (S_ISBLK(inode->i_mode)) {
    2538           0 :                 struct block_device *bdev = I_BDEV(inode);
    2539             : 
    2540           0 :                 set_blocksize(bdev, old_block_size);
    2541           0 :                 blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
    2542             :         }
    2543             : 
    2544           0 :         inode_lock(inode);
    2545           0 :         inode->i_flags &= ~S_SWAPFILE;
    2546           0 :         inode_unlock(inode);
    2547           0 :         filp_close(swap_file, NULL);
    2548             : 
    2549             :         /*
    2550             :          * Clear the SWP_USED flag after all resources are freed so that swapon
    2551             :          * can reuse this swap_info in alloc_swap_info() safely.  It is ok to
    2552             :          * not hold p->lock after we cleared its SWP_WRITEOK.
    2553             :          */
    2554           0 :         spin_lock(&swap_lock);
    2555           0 :         p->flags = 0;
    2556           0 :         spin_unlock(&swap_lock);
    2557             : 
    2558           0 :         err = 0;
    2559           0 :         atomic_inc(&proc_poll_event);
    2560           0 :         wake_up_interruptible(&proc_poll_wait);
    2561             : 
    2562             : out_dput:
    2563           0 :         filp_close(victim, NULL);
    2564             : out:
    2565           0 :         putname(pathname);
    2566           0 :         return err;
    2567             : }
    2568             : 
    2569             : #ifdef CONFIG_PROC_FS
    2570           0 : static __poll_t swaps_poll(struct file *file, poll_table *wait)
    2571             : {
    2572           0 :         struct seq_file *seq = file->private_data;
    2573             : 
    2574           0 :         poll_wait(file, &proc_poll_wait, wait);
    2575             : 
    2576           0 :         if (seq->poll_event != atomic_read(&proc_poll_event)) {
    2577           0 :                 seq->poll_event = atomic_read(&proc_poll_event);
    2578           0 :                 return EPOLLIN | EPOLLRDNORM | EPOLLERR | EPOLLPRI;
    2579             :         }
    2580             : 
    2581             :         return EPOLLIN | EPOLLRDNORM;
    2582             : }
    2583             : 
    2584             : /* iterator */
    2585           0 : static void *swap_start(struct seq_file *swap, loff_t *pos)
    2586             : {
    2587             :         struct swap_info_struct *si;
    2588             :         int type;
    2589           0 :         loff_t l = *pos;
    2590             : 
    2591           0 :         mutex_lock(&swapon_mutex);
    2592             : 
    2593           0 :         if (!l)
    2594             :                 return SEQ_START_TOKEN;
    2595             : 
    2596           0 :         for (type = 0; (si = swap_type_to_swap_info(type)); type++) {
    2597           0 :                 if (!(si->flags & SWP_USED) || !si->swap_map)
    2598           0 :                         continue;
    2599           0 :                 if (!--l)
    2600             :                         return si;
    2601             :         }
    2602             : 
    2603             :         return NULL;
    2604             : }
    2605             : 
    2606           0 : static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
    2607             : {
    2608           0 :         struct swap_info_struct *si = v;
    2609             :         int type;
    2610             : 
    2611           0 :         if (v == SEQ_START_TOKEN)
    2612             :                 type = 0;
    2613             :         else
    2614           0 :                 type = si->type + 1;
    2615             : 
    2616           0 :         ++(*pos);
    2617           0 :         for (; (si = swap_type_to_swap_info(type)); type++) {
    2618           0 :                 if (!(si->flags & SWP_USED) || !si->swap_map)
    2619           0 :                         continue;
    2620             :                 return si;
    2621             :         }
    2622             : 
    2623             :         return NULL;
    2624             : }
    2625             : 
    2626           0 : static void swap_stop(struct seq_file *swap, void *v)
    2627             : {
    2628           0 :         mutex_unlock(&swapon_mutex);
    2629           0 : }
    2630             : 
    2631           0 : static int swap_show(struct seq_file *swap, void *v)
    2632             : {
    2633           0 :         struct swap_info_struct *si = v;
    2634             :         struct file *file;
    2635             :         int len;
    2636             :         unsigned long bytes, inuse;
    2637             : 
    2638           0 :         if (si == SEQ_START_TOKEN) {
    2639           0 :                 seq_puts(swap, "Filename\t\t\t\tType\t\tSize\t\tUsed\t\tPriority\n");
    2640           0 :                 return 0;
    2641             :         }
    2642             : 
    2643           0 :         bytes = si->pages << (PAGE_SHIFT - 10);
    2644           0 :         inuse = READ_ONCE(si->inuse_pages) << (PAGE_SHIFT - 10);
    2645             : 
    2646           0 :         file = si->swap_file;
    2647           0 :         len = seq_file_path(swap, file, " \t\n\\");
    2648           0 :         seq_printf(swap, "%*s%s\t%lu\t%s%lu\t%s%d\n",
    2649             :                         len < 40 ? 40 - len : 1, " ",
    2650           0 :                         S_ISBLK(file_inode(file)->i_mode) ?
    2651             :                                 "partition" : "file\t",
    2652             :                         bytes, bytes < 10000000 ? "\t" : "",
    2653             :                         inuse, inuse < 10000000 ? "\t" : "",
    2654           0 :                         si->prio);
    2655           0 :         return 0;
    2656             : }
    2657             : 
    2658             : static const struct seq_operations swaps_op = {
    2659             :         .start =        swap_start,
    2660             :         .next =         swap_next,
    2661             :         .stop =         swap_stop,
    2662             :         .show =         swap_show
    2663             : };
    2664             : 
    2665           0 : static int swaps_open(struct inode *inode, struct file *file)
    2666             : {
    2667             :         struct seq_file *seq;
    2668             :         int ret;
    2669             : 
    2670           0 :         ret = seq_open(file, &swaps_op);
    2671           0 :         if (ret)
    2672             :                 return ret;
    2673             : 
    2674           0 :         seq = file->private_data;
    2675           0 :         seq->poll_event = atomic_read(&proc_poll_event);
    2676           0 :         return 0;
    2677             : }
    2678             : 
    2679             : static const struct proc_ops swaps_proc_ops = {
    2680             :         .proc_flags     = PROC_ENTRY_PERMANENT,
    2681             :         .proc_open      = swaps_open,
    2682             :         .proc_read      = seq_read,
    2683             :         .proc_lseek     = seq_lseek,
    2684             :         .proc_release   = seq_release,
    2685             :         .proc_poll      = swaps_poll,
    2686             : };
    2687             : 
    2688           1 : static int __init procswaps_init(void)
    2689             : {
    2690           1 :         proc_create("swaps", 0, NULL, &swaps_proc_ops);
    2691           1 :         return 0;
    2692             : }
    2693             : __initcall(procswaps_init);
    2694             : #endif /* CONFIG_PROC_FS */
    2695             : 
    2696             : #ifdef MAX_SWAPFILES_CHECK
    2697             : static int __init max_swapfiles_check(void)
    2698             : {
    2699             :         MAX_SWAPFILES_CHECK();
    2700             :         return 0;
    2701             : }
    2702             : late_initcall(max_swapfiles_check);
    2703             : #endif
    2704             : 
    2705           0 : static struct swap_info_struct *alloc_swap_info(void)
    2706             : {
    2707             :         struct swap_info_struct *p;
    2708           0 :         struct swap_info_struct *defer = NULL;
    2709             :         unsigned int type;
    2710             :         int i;
    2711             : 
    2712           0 :         p = kvzalloc(struct_size(p, avail_lists, nr_node_ids), GFP_KERNEL);
    2713           0 :         if (!p)
    2714             :                 return ERR_PTR(-ENOMEM);
    2715             : 
    2716           0 :         if (percpu_ref_init(&p->users, swap_users_ref_free,
    2717             :                             PERCPU_REF_INIT_DEAD, GFP_KERNEL)) {
    2718           0 :                 kvfree(p);
    2719           0 :                 return ERR_PTR(-ENOMEM);
    2720             :         }
    2721             : 
    2722           0 :         spin_lock(&swap_lock);
    2723           0 :         for (type = 0; type < nr_swapfiles; type++) {
    2724           0 :                 if (!(swap_info[type]->flags & SWP_USED))
    2725             :                         break;
    2726             :         }
    2727           0 :         if (type >= MAX_SWAPFILES) {
    2728           0 :                 spin_unlock(&swap_lock);
    2729           0 :                 percpu_ref_exit(&p->users);
    2730           0 :                 kvfree(p);
    2731           0 :                 return ERR_PTR(-EPERM);
    2732             :         }
    2733           0 :         if (type >= nr_swapfiles) {
    2734           0 :                 p->type = type;
    2735             :                 /*
    2736             :                  * Publish the swap_info_struct after initializing it.
    2737             :                  * Note that kvzalloc() above zeroes all its fields.
    2738             :                  */
    2739           0 :                 smp_store_release(&swap_info[type], p); /* rcu_assign_pointer() */
    2740           0 :                 nr_swapfiles++;
    2741             :         } else {
    2742           0 :                 defer = p;
    2743           0 :                 p = swap_info[type];
    2744             :                 /*
    2745             :                  * Do not memset this entry: a racing procfs swap_next()
    2746             :                  * would be relying on p->type to remain valid.
    2747             :                  */
    2748             :         }
    2749           0 :         p->swap_extent_root = RB_ROOT;
    2750           0 :         plist_node_init(&p->list, 0);
    2751           0 :         for_each_node(i)
    2752           0 :                 plist_node_init(&p->avail_lists[i], 0);
    2753           0 :         p->flags = SWP_USED;
    2754           0 :         spin_unlock(&swap_lock);
    2755           0 :         if (defer) {
    2756           0 :                 percpu_ref_exit(&defer->users);
    2757           0 :                 kvfree(defer);
    2758             :         }
    2759           0 :         spin_lock_init(&p->lock);
    2760           0 :         spin_lock_init(&p->cont_lock);
    2761           0 :         init_completion(&p->comp);
    2762             : 
    2763           0 :         return p;
    2764             : }
    2765             : 
    2766           0 : static int claim_swapfile(struct swap_info_struct *p, struct inode *inode)
    2767             : {
    2768             :         int error;
    2769             : 
    2770           0 :         if (S_ISBLK(inode->i_mode)) {
    2771           0 :                 p->bdev = blkdev_get_by_dev(inode->i_rdev,
    2772             :                                    FMODE_READ | FMODE_WRITE | FMODE_EXCL, p);
    2773           0 :                 if (IS_ERR(p->bdev)) {
    2774           0 :                         error = PTR_ERR(p->bdev);
    2775           0 :                         p->bdev = NULL;
    2776           0 :                         return error;
    2777             :                 }
    2778           0 :                 p->old_block_size = block_size(p->bdev);
    2779           0 :                 error = set_blocksize(p->bdev, PAGE_SIZE);
    2780           0 :                 if (error < 0)
    2781             :                         return error;
    2782             :                 /*
    2783             :                  * Zoned block devices contain zones that have a sequential
    2784             :                  * write only restriction.  Hence zoned block devices are not
    2785             :                  * suitable for swapping.  Disallow them here.
    2786             :                  */
    2787           0 :                 if (bdev_is_zoned(p->bdev))
    2788             :                         return -EINVAL;
    2789           0 :                 p->flags |= SWP_BLKDEV;
    2790           0 :         } else if (S_ISREG(inode->i_mode)) {
    2791           0 :                 p->bdev = inode->i_sb->s_bdev;
    2792             :         }
    2793             : 
    2794             :         return 0;
    2795             : }
    2796             : 
    2797             : 
    2798             : /*
    2799             :  * Find out how many pages are allowed for a single swap device. There
    2800             :  * are two limiting factors:
    2801             :  * 1) the number of bits for the swap offset in the swp_entry_t type, and
    2802             :  * 2) the number of bits in the swap pte, as defined by the different
    2803             :  * architectures.
    2804             :  *
    2805             :  * In order to find the largest possible bit mask, a swap entry with
    2806             :  * swap type 0 and swap offset ~0UL is created, encoded to a swap pte,
    2807             :  * decoded to a swp_entry_t again, and finally the swap offset is
    2808             :  * extracted.
    2809             :  *
    2810             :  * This will mask all the bits from the initial ~0UL mask that can't
    2811             :  * be encoded in either the swp_entry_t or the architecture definition
    2812             :  * of a swap pte.
    2813             :  */
    2814           0 : unsigned long generic_max_swapfile_size(void)
    2815             : {
    2816           3 :         return swp_offset(pte_to_swp_entry(
    2817           0 :                         swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
    2818             : }
    2819             : 
    2820             : /* Can be overridden by an architecture for additional checks. */
    2821           1 : __weak unsigned long arch_max_swapfile_size(void)
    2822             : {
    2823           1 :         return generic_max_swapfile_size();
    2824             : }
    2825             : 
    2826           0 : static unsigned long read_swap_header(struct swap_info_struct *p,
    2827             :                                         union swap_header *swap_header,
    2828             :                                         struct inode *inode)
    2829             : {
    2830             :         int i;
    2831             :         unsigned long maxpages;
    2832             :         unsigned long swapfilepages;
    2833             :         unsigned long last_page;
    2834             : 
    2835           0 :         if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
    2836           0 :                 pr_err("Unable to find swap-space signature\n");
    2837           0 :                 return 0;
    2838             :         }
    2839             : 
    2840             :         /* swap partition endianness hack... */
    2841           0 :         if (swab32(swap_header->info.version) == 1) {
    2842           0 :                 swab32s(&swap_header->info.version);
    2843           0 :                 swab32s(&swap_header->info.last_page);
    2844           0 :                 swab32s(&swap_header->info.nr_badpages);
    2845           0 :                 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
    2846             :                         return 0;
    2847           0 :                 for (i = 0; i < swap_header->info.nr_badpages; i++)
    2848           0 :                         swab32s(&swap_header->info.badpages[i]);
    2849             :         }
    2850             :         /* Check the swap header's sub-version */
    2851           0 :         if (swap_header->info.version != 1) {
    2852           0 :                 pr_warn("Unable to handle swap header version %d\n",
    2853             :                         swap_header->info.version);
    2854           0 :                 return 0;
    2855             :         }
    2856             : 
    2857           0 :         p->lowest_bit  = 1;
    2858           0 :         p->cluster_next = 1;
    2859           0 :         p->cluster_nr = 0;
    2860             : 
    2861           0 :         maxpages = swapfile_maximum_size;
    2862           0 :         last_page = swap_header->info.last_page;
    2863           0 :         if (!last_page) {
    2864           0 :                 pr_warn("Empty swap-file\n");
    2865           0 :                 return 0;
    2866             :         }
    2867           0 :         if (last_page > maxpages) {
    2868           0 :                 pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
    2869             :                         maxpages << (PAGE_SHIFT - 10),
    2870             :                         last_page << (PAGE_SHIFT - 10));
    2871             :         }
    2872           0 :         if (maxpages > last_page) {
    2873           0 :                 maxpages = last_page + 1;
    2874             :                 /* p->max is an unsigned int: don't overflow it */
    2875           0 :                 if ((unsigned int)maxpages == 0)
    2876           0 :                         maxpages = UINT_MAX;
    2877             :         }
    2878           0 :         p->highest_bit = maxpages - 1;
    2879             : 
    2880           0 :         if (!maxpages)
    2881             :                 return 0;
    2882           0 :         swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
    2883           0 :         if (swapfilepages && maxpages > swapfilepages) {
    2884           0 :                 pr_warn("Swap area shorter than signature indicates\n");
    2885           0 :                 return 0;
    2886             :         }
    2887           0 :         if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
    2888             :                 return 0;
    2889           0 :         if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
    2890             :                 return 0;
    2891             : 
    2892           0 :         return maxpages;
    2893             : }
    2894             : 
    2895             : #define SWAP_CLUSTER_INFO_COLS                                          \
    2896             :         DIV_ROUND_UP(L1_CACHE_BYTES, sizeof(struct swap_cluster_info))
    2897             : #define SWAP_CLUSTER_SPACE_COLS                                         \
    2898             :         DIV_ROUND_UP(SWAP_ADDRESS_SPACE_PAGES, SWAPFILE_CLUSTER)
    2899             : #define SWAP_CLUSTER_COLS                                               \
    2900             :         max_t(unsigned int, SWAP_CLUSTER_INFO_COLS, SWAP_CLUSTER_SPACE_COLS)
    2901             : 
    2902           0 : static int setup_swap_map_and_extents(struct swap_info_struct *p,
    2903             :                                         union swap_header *swap_header,
    2904             :                                         unsigned char *swap_map,
    2905             :                                         struct swap_cluster_info *cluster_info,
    2906             :                                         unsigned long maxpages,
    2907             :                                         sector_t *span)
    2908             : {
    2909             :         unsigned int j, k;
    2910             :         unsigned int nr_good_pages;
    2911             :         int nr_extents;
    2912           0 :         unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
    2913           0 :         unsigned long col = p->cluster_next / SWAPFILE_CLUSTER % SWAP_CLUSTER_COLS;
    2914             :         unsigned long i, idx;
    2915             : 
    2916           0 :         nr_good_pages = maxpages - 1;   /* omit header page */
    2917             : 
    2918           0 :         cluster_list_init(&p->free_clusters);
    2919           0 :         cluster_list_init(&p->discard_clusters);
    2920             : 
    2921           0 :         for (i = 0; i < swap_header->info.nr_badpages; i++) {
    2922           0 :                 unsigned int page_nr = swap_header->info.badpages[i];
    2923           0 :                 if (page_nr == 0 || page_nr > swap_header->info.last_page)
    2924             :                         return -EINVAL;
    2925           0 :                 if (page_nr < maxpages) {
    2926           0 :                         swap_map[page_nr] = SWAP_MAP_BAD;
    2927           0 :                         nr_good_pages--;
    2928             :                         /*
    2929             :                          * Haven't marked the cluster free yet, no list
    2930             :                          * operation involved
    2931             :                          */
    2932           0 :                         inc_cluster_info_page(p, cluster_info, page_nr);
    2933             :                 }
    2934             :         }
    2935             : 
    2936             :         /* Haven't marked the cluster free yet, no list operation involved */
    2937           0 :         for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++)
    2938           0 :                 inc_cluster_info_page(p, cluster_info, i);
    2939             : 
    2940           0 :         if (nr_good_pages) {
    2941           0 :                 swap_map[0] = SWAP_MAP_BAD;
    2942             :                 /*
    2943             :                  * Not mark the cluster free yet, no list
    2944             :                  * operation involved
    2945             :                  */
    2946           0 :                 inc_cluster_info_page(p, cluster_info, 0);
    2947           0 :                 p->max = maxpages;
    2948           0 :                 p->pages = nr_good_pages;
    2949           0 :                 nr_extents = setup_swap_extents(p, span);
    2950           0 :                 if (nr_extents < 0)
    2951             :                         return nr_extents;
    2952           0 :                 nr_good_pages = p->pages;
    2953             :         }
    2954           0 :         if (!nr_good_pages) {
    2955           0 :                 pr_warn("Empty swap-file\n");
    2956           0 :                 return -EINVAL;
    2957             :         }
    2958             : 
    2959           0 :         if (!cluster_info)
    2960             :                 return nr_extents;
    2961             : 
    2962             : 
    2963             :         /*
    2964             :          * Reduce false cache line sharing between cluster_info and
    2965             :          * sharing same address space.
    2966             :          */
    2967           0 :         for (k = 0; k < SWAP_CLUSTER_COLS; k++) {
    2968           0 :                 j = (k + col) % SWAP_CLUSTER_COLS;
    2969           0 :                 for (i = 0; i < DIV_ROUND_UP(nr_clusters, SWAP_CLUSTER_COLS); i++) {
    2970           0 :                         idx = i * SWAP_CLUSTER_COLS + j;
    2971           0 :                         if (idx >= nr_clusters)
    2972           0 :                                 continue;
    2973           0 :                         if (cluster_count(&cluster_info[idx]))
    2974           0 :                                 continue;
    2975           0 :                         cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
    2976           0 :                         cluster_list_add_tail(&p->free_clusters, cluster_info,
    2977             :                                               idx);
    2978             :                 }
    2979             :         }
    2980             :         return nr_extents;
    2981             : }
    2982             : 
    2983           0 : SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
    2984             : {
    2985             :         struct swap_info_struct *p;
    2986             :         struct filename *name;
    2987           0 :         struct file *swap_file = NULL;
    2988             :         struct address_space *mapping;
    2989             :         struct dentry *dentry;
    2990             :         int prio;
    2991             :         int error;
    2992             :         union swap_header *swap_header;
    2993             :         int nr_extents;
    2994             :         sector_t span;
    2995             :         unsigned long maxpages;
    2996           0 :         unsigned char *swap_map = NULL;
    2997           0 :         struct swap_cluster_info *cluster_info = NULL;
    2998           0 :         unsigned long *frontswap_map = NULL;
    2999           0 :         struct page *page = NULL;
    3000           0 :         struct inode *inode = NULL;
    3001           0 :         bool inced_nr_rotate_swap = false;
    3002             : 
    3003           0 :         if (swap_flags & ~SWAP_FLAGS_VALID)
    3004             :                 return -EINVAL;
    3005             : 
    3006           0 :         if (!capable(CAP_SYS_ADMIN))
    3007             :                 return -EPERM;
    3008             : 
    3009           0 :         if (!swap_avail_heads)
    3010             :                 return -ENOMEM;
    3011             : 
    3012           0 :         p = alloc_swap_info();
    3013           0 :         if (IS_ERR(p))
    3014           0 :                 return PTR_ERR(p);
    3015             : 
    3016           0 :         INIT_WORK(&p->discard_work, swap_discard_work);
    3017             : 
    3018           0 :         name = getname(specialfile);
    3019           0 :         if (IS_ERR(name)) {
    3020           0 :                 error = PTR_ERR(name);
    3021           0 :                 name = NULL;
    3022           0 :                 goto bad_swap;
    3023             :         }
    3024           0 :         swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0);
    3025           0 :         if (IS_ERR(swap_file)) {
    3026           0 :                 error = PTR_ERR(swap_file);
    3027           0 :                 swap_file = NULL;
    3028           0 :                 goto bad_swap;
    3029             :         }
    3030             : 
    3031           0 :         p->swap_file = swap_file;
    3032           0 :         mapping = swap_file->f_mapping;
    3033           0 :         dentry = swap_file->f_path.dentry;
    3034           0 :         inode = mapping->host;
    3035             : 
    3036           0 :         error = claim_swapfile(p, inode);
    3037           0 :         if (unlikely(error))
    3038             :                 goto bad_swap;
    3039             : 
    3040           0 :         inode_lock(inode);
    3041           0 :         if (d_unlinked(dentry) || cant_mount(dentry)) {
    3042             :                 error = -ENOENT;
    3043             :                 goto bad_swap_unlock_inode;
    3044             :         }
    3045           0 :         if (IS_SWAPFILE(inode)) {
    3046             :                 error = -EBUSY;
    3047             :                 goto bad_swap_unlock_inode;
    3048             :         }
    3049             : 
    3050             :         /*
    3051             :          * Read the swap header.
    3052             :          */
    3053           0 :         if (!mapping->a_ops->read_folio) {
    3054             :                 error = -EINVAL;
    3055             :                 goto bad_swap_unlock_inode;
    3056             :         }
    3057           0 :         page = read_mapping_page(mapping, 0, swap_file);
    3058           0 :         if (IS_ERR(page)) {
    3059           0 :                 error = PTR_ERR(page);
    3060           0 :                 goto bad_swap_unlock_inode;
    3061             :         }
    3062           0 :         swap_header = kmap(page);
    3063             : 
    3064           0 :         maxpages = read_swap_header(p, swap_header, inode);
    3065           0 :         if (unlikely(!maxpages)) {
    3066             :                 error = -EINVAL;
    3067             :                 goto bad_swap_unlock_inode;
    3068             :         }
    3069             : 
    3070             :         /* OK, set up the swap map and apply the bad block list */
    3071           0 :         swap_map = vzalloc(maxpages);
    3072           0 :         if (!swap_map) {
    3073             :                 error = -ENOMEM;
    3074             :                 goto bad_swap_unlock_inode;
    3075             :         }
    3076             : 
    3077           0 :         if (p->bdev && bdev_stable_writes(p->bdev))
    3078           0 :                 p->flags |= SWP_STABLE_WRITES;
    3079             : 
    3080           0 :         if (p->bdev && bdev_synchronous(p->bdev))
    3081           0 :                 p->flags |= SWP_SYNCHRONOUS_IO;
    3082             : 
    3083           0 :         if (p->bdev && bdev_nonrot(p->bdev)) {
    3084             :                 int cpu;
    3085             :                 unsigned long ci, nr_cluster;
    3086             : 
    3087           0 :                 p->flags |= SWP_SOLIDSTATE;
    3088           0 :                 p->cluster_next_cpu = alloc_percpu(unsigned int);
    3089           0 :                 if (!p->cluster_next_cpu) {
    3090             :                         error = -ENOMEM;
    3091             :                         goto bad_swap_unlock_inode;
    3092             :                 }
    3093             :                 /*
    3094             :                  * select a random position to start with to help wear leveling
    3095             :                  * SSD
    3096             :                  */
    3097           0 :                 for_each_possible_cpu(cpu) {
    3098           0 :                         per_cpu(*p->cluster_next_cpu, cpu) =
    3099           0 :                                 get_random_u32_inclusive(1, p->highest_bit);
    3100             :                 }
    3101           0 :                 nr_cluster = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
    3102             : 
    3103           0 :                 cluster_info = kvcalloc(nr_cluster, sizeof(*cluster_info),
    3104             :                                         GFP_KERNEL);
    3105           0 :                 if (!cluster_info) {
    3106             :                         error = -ENOMEM;
    3107             :                         goto bad_swap_unlock_inode;
    3108             :                 }
    3109             : 
    3110             :                 for (ci = 0; ci < nr_cluster; ci++)
    3111             :                         spin_lock_init(&((cluster_info + ci)->lock));
    3112             : 
    3113           0 :                 p->percpu_cluster = alloc_percpu(struct percpu_cluster);
    3114           0 :                 if (!p->percpu_cluster) {
    3115             :                         error = -ENOMEM;
    3116             :                         goto bad_swap_unlock_inode;
    3117             :                 }
    3118           0 :                 for_each_possible_cpu(cpu) {
    3119             :                         struct percpu_cluster *cluster;
    3120           0 :                         cluster = per_cpu_ptr(p->percpu_cluster, cpu);
    3121           0 :                         cluster_set_null(&cluster->index);
    3122             :                 }
    3123             :         } else {
    3124           0 :                 atomic_inc(&nr_rotate_swap);
    3125           0 :                 inced_nr_rotate_swap = true;
    3126             :         }
    3127             : 
    3128           0 :         error = swap_cgroup_swapon(p->type, maxpages);
    3129             :         if (error)
    3130             :                 goto bad_swap_unlock_inode;
    3131             : 
    3132           0 :         nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map,
    3133             :                 cluster_info, maxpages, &span);
    3134           0 :         if (unlikely(nr_extents < 0)) {
    3135             :                 error = nr_extents;
    3136             :                 goto bad_swap_unlock_inode;
    3137             :         }
    3138             :         /* frontswap enabled? set up bit-per-page map for frontswap */
    3139             :         if (IS_ENABLED(CONFIG_FRONTSWAP))
    3140             :                 frontswap_map = kvcalloc(BITS_TO_LONGS(maxpages),
    3141             :                                          sizeof(long),
    3142             :                                          GFP_KERNEL);
    3143             : 
    3144           0 :         if ((swap_flags & SWAP_FLAG_DISCARD) &&
    3145           0 :             p->bdev && bdev_max_discard_sectors(p->bdev)) {
    3146             :                 /*
    3147             :                  * When discard is enabled for swap with no particular
    3148             :                  * policy flagged, we set all swap discard flags here in
    3149             :                  * order to sustain backward compatibility with older
    3150             :                  * swapon(8) releases.
    3151             :                  */
    3152           0 :                 p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD |
    3153             :                              SWP_PAGE_DISCARD);
    3154             : 
    3155             :                 /*
    3156             :                  * By flagging sys_swapon, a sysadmin can tell us to
    3157             :                  * either do single-time area discards only, or to just
    3158             :                  * perform discards for released swap page-clusters.
    3159             :                  * Now it's time to adjust the p->flags accordingly.
    3160             :                  */
    3161           0 :                 if (swap_flags & SWAP_FLAG_DISCARD_ONCE)
    3162           0 :                         p->flags &= ~SWP_PAGE_DISCARD;
    3163           0 :                 else if (swap_flags & SWAP_FLAG_DISCARD_PAGES)
    3164           0 :                         p->flags &= ~SWP_AREA_DISCARD;
    3165             : 
    3166             :                 /* issue a swapon-time discard if it's still required */
    3167           0 :                 if (p->flags & SWP_AREA_DISCARD) {
    3168           0 :                         int err = discard_swap(p);
    3169           0 :                         if (unlikely(err))
    3170           0 :                                 pr_err("swapon: discard_swap(%p): %d\n",
    3171             :                                         p, err);
    3172             :                 }
    3173             :         }
    3174             : 
    3175           0 :         error = init_swap_address_space(p->type, maxpages);
    3176           0 :         if (error)
    3177             :                 goto bad_swap_unlock_inode;
    3178             : 
    3179             :         /*
    3180             :          * Flush any pending IO and dirty mappings before we start using this
    3181             :          * swap device.
    3182             :          */
    3183           0 :         inode->i_flags |= S_SWAPFILE;
    3184           0 :         error = inode_drain_writes(inode);
    3185           0 :         if (error) {
    3186           0 :                 inode->i_flags &= ~S_SWAPFILE;
    3187             :                 goto free_swap_address_space;
    3188             :         }
    3189             : 
    3190           0 :         mutex_lock(&swapon_mutex);
    3191           0 :         prio = -1;
    3192           0 :         if (swap_flags & SWAP_FLAG_PREFER)
    3193           0 :                 prio =
    3194             :                   (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
    3195           0 :         enable_swap_info(p, prio, swap_map, cluster_info, frontswap_map);
    3196             : 
    3197           0 :         pr_info("Adding %uk swap on %s.  Priority:%d extents:%d across:%lluk %s%s%s%s%s\n",
    3198             :                 p->pages<<(PAGE_SHIFT-10), name->name, p->prio,
    3199             :                 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
    3200             :                 (p->flags & SWP_SOLIDSTATE) ? "SS" : "",
    3201             :                 (p->flags & SWP_DISCARDABLE) ? "D" : "",
    3202             :                 (p->flags & SWP_AREA_DISCARD) ? "s" : "",
    3203             :                 (p->flags & SWP_PAGE_DISCARD) ? "c" : "",
    3204             :                 (frontswap_map) ? "FS" : "");
    3205             : 
    3206           0 :         mutex_unlock(&swapon_mutex);
    3207           0 :         atomic_inc(&proc_poll_event);
    3208           0 :         wake_up_interruptible(&proc_poll_wait);
    3209             : 
    3210           0 :         error = 0;
    3211           0 :         goto out;
    3212             : free_swap_address_space:
    3213           0 :         exit_swap_address_space(p->type);
    3214             : bad_swap_unlock_inode:
    3215             :         inode_unlock(inode);
    3216             : bad_swap:
    3217           0 :         free_percpu(p->percpu_cluster);
    3218           0 :         p->percpu_cluster = NULL;
    3219           0 :         free_percpu(p->cluster_next_cpu);
    3220           0 :         p->cluster_next_cpu = NULL;
    3221           0 :         if (inode && S_ISBLK(inode->i_mode) && p->bdev) {
    3222           0 :                 set_blocksize(p->bdev, p->old_block_size);
    3223           0 :                 blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
    3224             :         }
    3225           0 :         inode = NULL;
    3226           0 :         destroy_swap_extents(p);
    3227           0 :         swap_cgroup_swapoff(p->type);
    3228           0 :         spin_lock(&swap_lock);
    3229           0 :         p->swap_file = NULL;
    3230           0 :         p->flags = 0;
    3231           0 :         spin_unlock(&swap_lock);
    3232           0 :         vfree(swap_map);
    3233           0 :         kvfree(cluster_info);
    3234           0 :         kvfree(frontswap_map);
    3235           0 :         if (inced_nr_rotate_swap)
    3236             :                 atomic_dec(&nr_rotate_swap);
    3237           0 :         if (swap_file)
    3238           0 :                 filp_close(swap_file, NULL);
    3239             : out:
    3240           0 :         if (page && !IS_ERR(page)) {
    3241           0 :                 kunmap(page);
    3242           0 :                 put_page(page);
    3243             :         }
    3244           0 :         if (name)
    3245           0 :                 putname(name);
    3246           0 :         if (inode)
    3247             :                 inode_unlock(inode);
    3248           0 :         if (!error)
    3249           0 :                 enable_swap_slots_cache();
    3250           0 :         return error;
    3251             : }
    3252             : 
    3253           0 : void si_swapinfo(struct sysinfo *val)
    3254             : {
    3255             :         unsigned int type;
    3256           0 :         unsigned long nr_to_be_unused = 0;
    3257             : 
    3258           0 :         spin_lock(&swap_lock);
    3259           0 :         for (type = 0; type < nr_swapfiles; type++) {
    3260           0 :                 struct swap_info_struct *si = swap_info[type];
    3261             : 
    3262           0 :                 if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
    3263           0 :                         nr_to_be_unused += READ_ONCE(si->inuse_pages);
    3264             :         }
    3265           0 :         val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused;
    3266           0 :         val->totalswap = total_swap_pages + nr_to_be_unused;
    3267           0 :         spin_unlock(&swap_lock);
    3268           0 : }
    3269             : 
    3270             : /*
    3271             :  * Verify that a swap entry is valid and increment its swap map count.
    3272             :  *
    3273             :  * Returns error code in following case.
    3274             :  * - success -> 0
    3275             :  * - swp_entry is invalid -> EINVAL
    3276             :  * - swp_entry is migration entry -> EINVAL
    3277             :  * - swap-cache reference is requested but there is already one. -> EEXIST
    3278             :  * - swap-cache reference is requested but the entry is not used. -> ENOENT
    3279             :  * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
    3280             :  */
    3281           0 : static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
    3282             : {
    3283             :         struct swap_info_struct *p;
    3284             :         struct swap_cluster_info *ci;
    3285             :         unsigned long offset;
    3286             :         unsigned char count;
    3287             :         unsigned char has_cache;
    3288             :         int err;
    3289             : 
    3290           0 :         p = get_swap_device(entry);
    3291           0 :         if (!p)
    3292             :                 return -EINVAL;
    3293             : 
    3294           0 :         offset = swp_offset(entry);
    3295           0 :         ci = lock_cluster_or_swap_info(p, offset);
    3296             : 
    3297           0 :         count = p->swap_map[offset];
    3298             : 
    3299             :         /*
    3300             :          * swapin_readahead() doesn't check if a swap entry is valid, so the
    3301             :          * swap entry could be SWAP_MAP_BAD. Check here with lock held.
    3302             :          */
    3303           0 :         if (unlikely(swap_count(count) == SWAP_MAP_BAD)) {
    3304             :                 err = -ENOENT;
    3305             :                 goto unlock_out;
    3306             :         }
    3307             : 
    3308           0 :         has_cache = count & SWAP_HAS_CACHE;
    3309           0 :         count &= ~SWAP_HAS_CACHE;
    3310           0 :         err = 0;
    3311             : 
    3312           0 :         if (usage == SWAP_HAS_CACHE) {
    3313             : 
    3314             :                 /* set SWAP_HAS_CACHE if there is no cache and entry is used */
    3315           0 :                 if (!has_cache && count)
    3316             :                         has_cache = SWAP_HAS_CACHE;
    3317           0 :                 else if (has_cache)             /* someone else added cache */
    3318             :                         err = -EEXIST;
    3319             :                 else                            /* no users remaining */
    3320           0 :                         err = -ENOENT;
    3321             : 
    3322           0 :         } else if (count || has_cache) {
    3323             : 
    3324           0 :                 if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
    3325           0 :                         count += usage;
    3326           0 :                 else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
    3327             :                         err = -EINVAL;
    3328           0 :                 else if (swap_count_continued(p, offset, count))
    3329             :                         count = COUNT_CONTINUED;
    3330             :                 else
    3331           0 :                         err = -ENOMEM;
    3332             :         } else
    3333             :                 err = -ENOENT;                  /* unused swap entry */
    3334             : 
    3335           0 :         WRITE_ONCE(p->swap_map[offset], count | has_cache);
    3336             : 
    3337             : unlock_out:
    3338           0 :         unlock_cluster_or_swap_info(p, ci);
    3339           0 :         put_swap_device(p);
    3340           0 :         return err;
    3341             : }
    3342             : 
    3343             : /*
    3344             :  * Help swapoff by noting that swap entry belongs to shmem/tmpfs
    3345             :  * (in which case its reference count is never incremented).
    3346             :  */
    3347           0 : void swap_shmem_alloc(swp_entry_t entry)
    3348             : {
    3349           0 :         __swap_duplicate(entry, SWAP_MAP_SHMEM);
    3350           0 : }
    3351             : 
    3352             : /*
    3353             :  * Increase reference count of swap entry by 1.
    3354             :  * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
    3355             :  * but could not be atomically allocated.  Returns 0, just as if it succeeded,
    3356             :  * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
    3357             :  * might occur if a page table entry has got corrupted.
    3358             :  */
    3359           0 : int swap_duplicate(swp_entry_t entry)
    3360             : {
    3361           0 :         int err = 0;
    3362             : 
    3363           0 :         while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
    3364           0 :                 err = add_swap_count_continuation(entry, GFP_ATOMIC);
    3365           0 :         return err;
    3366             : }
    3367             : 
    3368             : /*
    3369             :  * @entry: swap entry for which we allocate swap cache.
    3370             :  *
    3371             :  * Called when allocating swap cache for existing swap entry,
    3372             :  * This can return error codes. Returns 0 at success.
    3373             :  * -EEXIST means there is a swap cache.
    3374             :  * Note: return code is different from swap_duplicate().
    3375             :  */
    3376           0 : int swapcache_prepare(swp_entry_t entry)
    3377             : {
    3378           0 :         return __swap_duplicate(entry, SWAP_HAS_CACHE);
    3379             : }
    3380             : 
    3381           0 : struct swap_info_struct *swp_swap_info(swp_entry_t entry)
    3382             : {
    3383           0 :         return swap_type_to_swap_info(swp_type(entry));
    3384             : }
    3385             : 
    3386           0 : struct swap_info_struct *page_swap_info(struct page *page)
    3387             : {
    3388           0 :         swp_entry_t entry = { .val = page_private(page) };
    3389           0 :         return swp_swap_info(entry);
    3390             : }
    3391             : 
    3392             : /*
    3393             :  * out-of-line methods to avoid include hell.
    3394             :  */
    3395           0 : struct address_space *swapcache_mapping(struct folio *folio)
    3396             : {
    3397           0 :         return page_swap_info(&folio->page)->swap_file->f_mapping;
    3398             : }
    3399             : EXPORT_SYMBOL_GPL(swapcache_mapping);
    3400             : 
    3401           0 : pgoff_t __page_file_index(struct page *page)
    3402             : {
    3403           0 :         swp_entry_t swap = { .val = page_private(page) };
    3404           0 :         return swp_offset(swap);
    3405             : }
    3406             : EXPORT_SYMBOL_GPL(__page_file_index);
    3407             : 
    3408             : /*
    3409             :  * add_swap_count_continuation - called when a swap count is duplicated
    3410             :  * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
    3411             :  * page of the original vmalloc'ed swap_map, to hold the continuation count
    3412             :  * (for that entry and for its neighbouring PAGE_SIZE swap entries).  Called
    3413             :  * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
    3414             :  *
    3415             :  * These continuation pages are seldom referenced: the common paths all work
    3416             :  * on the original swap_map, only referring to a continuation page when the
    3417             :  * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
    3418             :  *
    3419             :  * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
    3420             :  * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
    3421             :  * can be called after dropping locks.
    3422             :  */
    3423           0 : int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
    3424             : {
    3425             :         struct swap_info_struct *si;
    3426             :         struct swap_cluster_info *ci;
    3427             :         struct page *head;
    3428             :         struct page *page;
    3429             :         struct page *list_page;
    3430             :         pgoff_t offset;
    3431             :         unsigned char count;
    3432           0 :         int ret = 0;
    3433             : 
    3434             :         /*
    3435             :          * When debugging, it's easier to use __GFP_ZERO here; but it's better
    3436             :          * for latency not to zero a page while GFP_ATOMIC and holding locks.
    3437             :          */
    3438           0 :         page = alloc_page(gfp_mask | __GFP_HIGHMEM);
    3439             : 
    3440           0 :         si = get_swap_device(entry);
    3441           0 :         if (!si) {
    3442             :                 /*
    3443             :                  * An acceptable race has occurred since the failing
    3444             :                  * __swap_duplicate(): the swap device may be swapoff
    3445             :                  */
    3446             :                 goto outer;
    3447             :         }
    3448           0 :         spin_lock(&si->lock);
    3449             : 
    3450           0 :         offset = swp_offset(entry);
    3451             : 
    3452           0 :         ci = lock_cluster(si, offset);
    3453             : 
    3454           0 :         count = swap_count(si->swap_map[offset]);
    3455             : 
    3456           0 :         if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
    3457             :                 /*
    3458             :                  * The higher the swap count, the more likely it is that tasks
    3459             :                  * will race to add swap count continuation: we need to avoid
    3460             :                  * over-provisioning.
    3461             :                  */
    3462             :                 goto out;
    3463             :         }
    3464             : 
    3465           0 :         if (!page) {
    3466             :                 ret = -ENOMEM;
    3467             :                 goto out;
    3468             :         }
    3469             : 
    3470             :         /*
    3471             :          * We are fortunate that although vmalloc_to_page uses pte_offset_map,
    3472             :          * no architecture is using highmem pages for kernel page tables: so it
    3473             :          * will not corrupt the GFP_ATOMIC caller's atomic page table kmaps.
    3474             :          */
    3475           0 :         head = vmalloc_to_page(si->swap_map + offset);
    3476           0 :         offset &= ~PAGE_MASK;
    3477             : 
    3478           0 :         spin_lock(&si->cont_lock);
    3479             :         /*
    3480             :          * Page allocation does not initialize the page's lru field,
    3481             :          * but it does always reset its private field.
    3482             :          */
    3483           0 :         if (!page_private(head)) {
    3484           0 :                 BUG_ON(count & COUNT_CONTINUED);
    3485           0 :                 INIT_LIST_HEAD(&head->lru);
    3486           0 :                 set_page_private(head, SWP_CONTINUED);
    3487           0 :                 si->flags |= SWP_CONTINUED;
    3488             :         }
    3489             : 
    3490           0 :         list_for_each_entry(list_page, &head->lru, lru) {
    3491             :                 unsigned char *map;
    3492             : 
    3493             :                 /*
    3494             :                  * If the previous map said no continuation, but we've found
    3495             :                  * a continuation page, free our allocation and use this one.
    3496             :                  */
    3497           0 :                 if (!(count & COUNT_CONTINUED))
    3498             :                         goto out_unlock_cont;
    3499             : 
    3500           0 :                 map = kmap_atomic(list_page) + offset;
    3501           0 :                 count = *map;
    3502           0 :                 kunmap_atomic(map);
    3503             : 
    3504             :                 /*
    3505             :                  * If this continuation count now has some space in it,
    3506             :                  * free our allocation and use this one.
    3507             :                  */
    3508           0 :                 if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
    3509             :                         goto out_unlock_cont;
    3510             :         }
    3511             : 
    3512           0 :         list_add_tail(&page->lru, &head->lru);
    3513           0 :         page = NULL;                    /* now it's attached, don't free it */
    3514             : out_unlock_cont:
    3515           0 :         spin_unlock(&si->cont_lock);
    3516             : out:
    3517           0 :         unlock_cluster(ci);
    3518           0 :         spin_unlock(&si->lock);
    3519             :         put_swap_device(si);
    3520             : outer:
    3521           0 :         if (page)
    3522           0 :                 __free_page(page);
    3523           0 :         return ret;
    3524             : }
    3525             : 
    3526             : /*
    3527             :  * swap_count_continued - when the original swap_map count is incremented
    3528             :  * from SWAP_MAP_MAX, check if there is already a continuation page to carry
    3529             :  * into, carry if so, or else fail until a new continuation page is allocated;
    3530             :  * when the original swap_map count is decremented from 0 with continuation,
    3531             :  * borrow from the continuation and report whether it still holds more.
    3532             :  * Called while __swap_duplicate() or swap_entry_free() holds swap or cluster
    3533             :  * lock.
    3534             :  */
    3535           0 : static bool swap_count_continued(struct swap_info_struct *si,
    3536             :                                  pgoff_t offset, unsigned char count)
    3537             : {
    3538             :         struct page *head;
    3539             :         struct page *page;
    3540             :         unsigned char *map;
    3541             :         bool ret;
    3542             : 
    3543           0 :         head = vmalloc_to_page(si->swap_map + offset);
    3544           0 :         if (page_private(head) != SWP_CONTINUED) {
    3545           0 :                 BUG_ON(count & COUNT_CONTINUED);
    3546             :                 return false;           /* need to add count continuation */
    3547             :         }
    3548             : 
    3549           0 :         spin_lock(&si->cont_lock);
    3550           0 :         offset &= ~PAGE_MASK;
    3551           0 :         page = list_next_entry(head, lru);
    3552           0 :         map = kmap_atomic(page) + offset;
    3553             : 
    3554           0 :         if (count == SWAP_MAP_MAX)      /* initial increment from swap_map */
    3555             :                 goto init_map;          /* jump over SWAP_CONT_MAX checks */
    3556             : 
    3557           0 :         if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
    3558             :                 /*
    3559             :                  * Think of how you add 1 to 999
    3560             :                  */
    3561           0 :                 while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
    3562           0 :                         kunmap_atomic(map);
    3563           0 :                         page = list_next_entry(page, lru);
    3564           0 :                         BUG_ON(page == head);
    3565           0 :                         map = kmap_atomic(page) + offset;
    3566             :                 }
    3567           0 :                 if (*map == SWAP_CONT_MAX) {
    3568           0 :                         kunmap_atomic(map);
    3569           0 :                         page = list_next_entry(page, lru);
    3570           0 :                         if (page == head) {
    3571             :                                 ret = false;    /* add count continuation */
    3572             :                                 goto out;
    3573             :                         }
    3574           0 :                         map = kmap_atomic(page) + offset;
    3575           0 : init_map:               *map = 0;               /* we didn't zero the page */
    3576             :                 }
    3577           0 :                 *map += 1;
    3578           0 :                 kunmap_atomic(map);
    3579           0 :                 while ((page = list_prev_entry(page, lru)) != head) {
    3580           0 :                         map = kmap_atomic(page) + offset;
    3581           0 :                         *map = COUNT_CONTINUED;
    3582           0 :                         kunmap_atomic(map);
    3583             :                 }
    3584             :                 ret = true;                     /* incremented */
    3585             : 
    3586             :         } else {                                /* decrementing */
    3587             :                 /*
    3588             :                  * Think of how you subtract 1 from 1000
    3589             :                  */
    3590           0 :                 BUG_ON(count != COUNT_CONTINUED);
    3591           0 :                 while (*map == COUNT_CONTINUED) {
    3592           0 :                         kunmap_atomic(map);
    3593           0 :                         page = list_next_entry(page, lru);
    3594           0 :                         BUG_ON(page == head);
    3595           0 :                         map = kmap_atomic(page) + offset;
    3596             :                 }
    3597           0 :                 BUG_ON(*map == 0);
    3598           0 :                 *map -= 1;
    3599           0 :                 if (*map == 0)
    3600           0 :                         count = 0;
    3601           0 :                 kunmap_atomic(map);
    3602           0 :                 while ((page = list_prev_entry(page, lru)) != head) {
    3603           0 :                         map = kmap_atomic(page) + offset;
    3604           0 :                         *map = SWAP_CONT_MAX | count;
    3605           0 :                         count = COUNT_CONTINUED;
    3606           0 :                         kunmap_atomic(map);
    3607             :                 }
    3608           0 :                 ret = count == COUNT_CONTINUED;
    3609             :         }
    3610             : out:
    3611           0 :         spin_unlock(&si->cont_lock);
    3612           0 :         return ret;
    3613             : }
    3614             : 
    3615             : /*
    3616             :  * free_swap_count_continuations - swapoff free all the continuation pages
    3617             :  * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
    3618             :  */
    3619           0 : static void free_swap_count_continuations(struct swap_info_struct *si)
    3620             : {
    3621             :         pgoff_t offset;
    3622             : 
    3623           0 :         for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
    3624             :                 struct page *head;
    3625           0 :                 head = vmalloc_to_page(si->swap_map + offset);
    3626           0 :                 if (page_private(head)) {
    3627             :                         struct page *page, *next;
    3628             : 
    3629           0 :                         list_for_each_entry_safe(page, next, &head->lru, lru) {
    3630           0 :                                 list_del(&page->lru);
    3631           0 :                                 __free_page(page);
    3632             :                         }
    3633             :                 }
    3634             :         }
    3635           0 : }
    3636             : 
    3637             : #if defined(CONFIG_MEMCG) && defined(CONFIG_BLK_CGROUP)
    3638             : void __cgroup_throttle_swaprate(struct page *page, gfp_t gfp_mask)
    3639             : {
    3640             :         struct swap_info_struct *si, *next;
    3641             :         int nid = page_to_nid(page);
    3642             : 
    3643             :         if (!(gfp_mask & __GFP_IO))
    3644             :                 return;
    3645             : 
    3646             :         if (!blk_cgroup_congested())
    3647             :                 return;
    3648             : 
    3649             :         /*
    3650             :          * We've already scheduled a throttle, avoid taking the global swap
    3651             :          * lock.
    3652             :          */
    3653             :         if (current->throttle_disk)
    3654             :                 return;
    3655             : 
    3656             :         spin_lock(&swap_avail_lock);
    3657             :         plist_for_each_entry_safe(si, next, &swap_avail_heads[nid],
    3658             :                                   avail_lists[nid]) {
    3659             :                 if (si->bdev) {
    3660             :                         blkcg_schedule_throttle(si->bdev->bd_disk, true);
    3661             :                         break;
    3662             :                 }
    3663             :         }
    3664             :         spin_unlock(&swap_avail_lock);
    3665             : }
    3666             : #endif
    3667             : 
    3668           1 : static int __init swapfile_init(void)
    3669             : {
    3670             :         int nid;
    3671             : 
    3672           1 :         swap_avail_heads = kmalloc_array(nr_node_ids, sizeof(struct plist_head),
    3673             :                                          GFP_KERNEL);
    3674           1 :         if (!swap_avail_heads) {
    3675           0 :                 pr_emerg("Not enough memory for swap heads, swap is disabled\n");
    3676           0 :                 return -ENOMEM;
    3677             :         }
    3678             : 
    3679           1 :         for_each_node(nid)
    3680           2 :                 plist_head_init(&swap_avail_heads[nid]);
    3681             : 
    3682           1 :         swapfile_maximum_size = arch_max_swapfile_size();
    3683             : 
    3684             : #ifdef CONFIG_MIGRATION
    3685           1 :         if (swapfile_maximum_size >= (1UL << SWP_MIG_TOTAL_BITS))
    3686           0 :                 swap_migration_ad_supported = true;
    3687             : #endif  /* CONFIG_MIGRATION */
    3688             : 
    3689             :         return 0;
    3690             : }
    3691             : subsys_initcall(swapfile_init);

Generated by: LCOV version 1.14